SYMPOSIUM

Collaboration in chronic ITP:

Improving quality of life and patient outcomes

This programme is supported by an independent medical education grant from Sanofi and is jointly provided by USF Health and touchIME. This symposium precedes the 66th ASH Annual Meeting and Exposition.

The activity and materials have been developed independently of the supporter, Sanofi, who has had no input into the editorial content or faculty selection.

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

Expert panel

Prof. Cindy Neunert (Chair)
Columbia University Irving Medical Center,
New York, NY, USA

Prof. David Kuter

Massachusetts General Hospital,
Boston, MA, USA

Dr María Eva Mingot Castellano Hospital Universitario Virgen del Rocío, Seville, Spain

Agenda

Welcome and introduction

Prof. Cindy Neunert

Patient voices: The impact of ITP (20 minutes)

Prof. Cindy Neunert

Patient practicalities: Examining cases of chronic ITP (20 minutes)

Dr María Eva Mingot Castellano

Patient potentials: Emerging targeted treatments for ITP (20 minutes)

Prof. David Kuter

Panel discussion – Patient collaboration: Working together to improve outcomes (20 minutes)

All faculty

Summary and close

Prof. Cindy Neunert

Touc

Sessions will include interactive audience polling and audience Q&As

. Learning objectives

1 Explain the natural history of chronic ITP and its impact on patients

Discuss current and future treatment strategies to improve the HRQoL of patients with chronic ITP

Practice shared decision-making and collaboration to optimize outcomes for patients with chronic ITP

Patient voices: The impact of ITP

Prof. Cindy Neunert

Columbia University Irving Medical Center,

New York, NY, USA

Immune thrombocytopenia (ITP)

ITP is an autoimmune disorder of primary haemostasis¹

S

~60% of adults with ITP **progress** to chronic disease (>12 months)³

Prevalence of 9.5 per 100,000 adults²

Slightly higher overall mortality of adults with ITP vs general population (1.3–2.3 X)^{1,4}

Higher prevalence in women vs men, especially in younger adults, but more equal in adults >65 years²

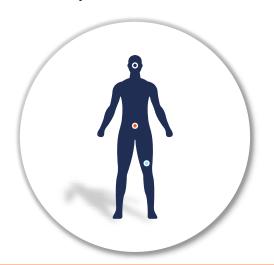
ITP is defined by a **platelet count** <100 x 10⁹/L with no underlying cause¹

ITP, immune thrombocytopenia.

^{1.} Martínez-Carballeira D, et al. Haematol Rep. 2024;16:204-19; 2. Lambert MP, Gernsheimer TB. Blood. 2017;129:2829-35;

^{3.} Moulis G, et al. Rev Med Interne. 2021;42:11–5; 4. Nørgaard M, et al. Blood. 2011;117:3514–20.

Increased bleeding tendency is the central clinical symptom of ITP


Symptomatic bleeding affects 60–70% of patients with chronic ITP¹

Head

Intracranial haemorrhange² Epistaxis¹ Wet purpura¹

Abdominal bleeding

Gastrointestinal bleeding² Haematuria² Urogenital bleeding¹ Increased menstrual bleeding¹

Skin

Petechiae on legs (less frequently on arms or trunk)¹

Non-bleeding symptoms:

Fatigue¹
Cognitive impairment^{1,3}

Platelet count does not fully correlate with disease burden⁴

ITP, immune thrombocytopenia.

- 1. Matzdorff A, et al. Oncol Res Treat. 2018;41(Suppl. 5):1–30; 2. Moulis G, et al. Rev Med Interne. 2021;42:11–15; 3. Kuter DJ, et al. Br J Haematol. 2024;205:291–9;
- 4. Maitland H, et al. Hematology. 2024;29:2375177.

Patients with ITP experience significant morbidity and the disease can impact HRQoL

Concern over risk of bleeding¹

Living with unpredictability and a fear of bleeding impacts QoL¹

Patients may have to alter their lifestyle to reduce bleeding risk, e.g. avoiding contact sports²

Patients may experience **social stigmatization** from visible skin manifestations, which can affect self-esteem^{2,3,5}

Patients can experience **fatigue** and **cognitive impairment** that can decrease participation in activities and work^{3,4}

Heavy menstrual bleeding is common in female patients with ITP and results in high rates of hospitalization⁶

HRQoL, health-related QoL; ITP, immune thrombocytopenia; QoL, quality of life.

^{1.} Kruse C, et al. Ann Blood. 2021;6:9; 2. Matzdorff A, et al. Oncol Res Treat. 2018;41(Suppl. 5):1–30; 3. Cooper N et al. Am J Hematol. 2021;96:199–207;

^{4.} Kuter DJ, et al. Br J Haematol. 2024;205:291-9; 5. Hemati Z, Kiani D. Int J Hematol Oncol Stem Cell Res. 2016;10:79-84;

^{6.} Doshi BS, et al. Presented at: ISTH 2024, Bangkok, Thailand. 22–26 June 2024. Poster presentation PB0694.

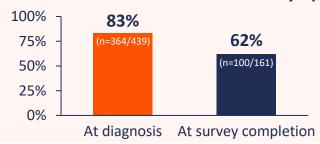
Heavy menstrual bleeding* is one of the most severe symptoms of ITP in female patients

Treatment options can be limited due to the impact on fertility¹

Therapeutic options that preserve fertility include hormonal therapy and antifibrinolytics¹

Iron deficiency is common in female patients with ITP and heavy menstrual bleeding¹

A cross-sectional study of women ≥16 years with primary chronic ITP in The Netherlands (N=37)¹


Experienced clinical menstrual problems (now or in the past)

Menstruation affected daily life (MMAS score <100)

No significant link between platelet count and impact of HMB (p=0.30)

In the I-WISh survey, a high proportion of women who experienced HMB rated it as one of their most severe symptoms²

^{*}Defined as menstrual periods with abnormally heavy bleeding and/or prolonged bleeding (lasting more than 7 days).

HMB, heavy menstrual bleeding; ITP, immune thrombocytopenia; I-WISh, ITP world impact survey; MMAS, menorrhagia multi-attribute scale.

1. van Dijk WEM, et al. *Br J Haematol.* 2022;198:754–64; 2. Cooper N, et al. *Am J Haematol.* 2021;98:188–98.

Fatigue is frequently reported as the most debilitating symptom of ITP¹

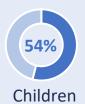
ITP Natural History Study Registry (n=324): patients reflected on fatigue levels over previous week¹

Reported fatigue

Bothered by fatigue

I-WISh study (patients, n=1,507; physicians, n=465):²

Patients reported fatigue


Physicians reported fatigue

Patients reported increasing their energy levels as a top treatment goal

Observational study of children receiving second-line therapies for ITP: Children (n=54) and adolescents (n=42) with ITP reported a similarly high level of moderate-to-severe fatigue³

ITP impacts patients' psychological and emotional wellbeing

Data from PDSA patient registry (n=310) Anxiety over the previous 7 days:¹

needed help with their anxiety

found it hard to focus on anything due to anxiety

I-WISh survey $(n=1,507)^2$

felt ITP negatively impacted their psychological and emotional wellbeing

Issues most affected were:

- Concerns that their condition would worsen
- Unexplained fluctuations in platelet levels
- The importance of having stable and safe platelet levels
- Feeling anxious/nervous about platelet counts

Cognitive impairment in patients with ITP has been reported and warrants further investigation

Patients with ITP (N=69) were assessed using CANTAB cognitive testing and MRI scans¹

50% of patients had at least one impaired cognitive domain

Episodic memory was most affected

Patients with chronic ITP (N=49) were assessed for cognitive impairment using the Cogstate Brief Battery²

59% of patients had clinically important cognitive impairment

Impairment was most common for attention

Severity of cognitive impairment was comparable to mild traumatic brain injury

Further prospective evaluation of cognitive impairment at diagnosis and with treatment is required to consider the potential impact on patients and their overall QoL²

The majority of patients with ITP feel their ability to undertake daily tasks is impacted¹

Experienced difficulty concentrating¹

Reduced or seriously considered reducing working hours¹

Burdened by the length of time spent in hospital/at the doctors²

Productivity at work negatively affected¹

Experienced limitations when travelling²

Regular activities outside work* affected¹

^{*}Described as work around the house, shopping, childcare, exercise and studying (score ≥5 on a scale of 1–10 [10 completely prevented productivity]). ITP, immune thrombocytopenia.

^{1.} Cooper N et al. Am J Hematol. 2021;96:199-207; 2. Matzdorff A, et al. Oncol Res Treat. 2018;41(Suppl. 5):1-30.

Numerous PRO measures can be used to assess the impact of ITP on HRQoL

Examples of **general tools** used to measure PROs in patients with ITP

General health status

- SF-36
- EQ-5D

Fatigue/energy levels

FACIT-F

Worry/concern about bleeding/bruising

• FACT-Th6

Maitland H, et al. *Hematology*. 2024;29:2375177.

Psychological and somatic symptoms

- Hamilton anxiety and expression rating scales
- HARS-IG

These are generic PRO tools, which are not able to identify factors which have the greatest impact on HRQoL specific to ITP

ITP-specific tools used to measure PROs/QoL

- ITP Life Quality Index
- ITP patient assessment questionnaire
- Kids' ITP tool

These tools can assess issues related to ITP more precisely

EQ-5D, EuroQoL 5-dimension; FACIT-F, functional assessment of chronic illness therapy – fatigue; FACT-Th6, Functional Assessment of Cancer Therapy – Thrombocytopenia 6 Item Version; HARS-IG, Hamilton anxiety rating scale interview guide; HRQoL, health-related QoL; ITP, immune thrombocytopenia; PRO, patient-reported outcome; QoL, quality of life; SF-36, short-form health survey.

. There are several efficacious treatments for ITP, but various factors should inform treatment decisions

Initial/emergent therapies

☐ Corticosteroids¹ IVIg²

Anti-D Ig²

Significant toxicity associated with prolonged exposure to corticosteroids3

Second line onwards

TPO-RAs

Eltrombopag^{1,2,4} Romiplostim^{1,2,4} Avatrombopag^{1,2,4}

Anti-CD20

Rituximab (*off label*)^{1,2,4}

Syk inhibitor

Fostamatinib^{2,4,5}

Splenectomy^{1,2,5}

Treatment-related side effects⁴

Patients may be required to remain on treatment long term⁶

There are limited options for patients who are refractory/intolerant to standard therapies⁶

Treatment selection should consider patient's preferences, beliefs and values⁷

Shared decision-making results in treatment decisions that are

individualized to the patient and the phase of

disease⁷

CD, cluster of differentiation; Ig, immunoglobulin; ITP, immune thrombocytopenia; IV, intravenous; Syk, spleen tyrosine kinase inhibitor; TPO-RA, thrombopoietin receptor agonist. 1. Neunert C, et al. Blood Adv. 2019:3:3829-66; 2. Provan D, et al. Blood Adv. 2019;3:3780-817; 3. Cuker A, et al. eJHaem. 2023;4:350-7;

4. FDA PI. Available at: www.accessdata.fda.gov/scripts/cder/daf/index.cfm (accessed 12 September 2024); 5. Kim DS. Blood Res. 2022;57(Suppl. 1):S112-9;

6. Al-Samkari H. Am J Hematol. 2024;99:2178-90; 7. Maitland H, et al. Haematology. 2024;29:2375177.

ā

Patient practicalities: Examining cases of chronic ITP

Dr María Eva Mingot Castellano Hospital Universitario Virgen del Rocío, Seville, Spain

Patient case 1: Initial presentation

Age: 24 years

History

Presentation

Impact of symptoms

No family or personal history of bleeding

Sex: Female

Heavy menstrual bleeding (PBAC: 112) and petechiae in the past 4 days

- She loves swimming but has felt unable to go recently due to the irregularity of her menstrual bleeding and the appearance of the petechiae
- She has felt terrible in recent weeks with constant fatigue and a rapid heartbeat, and has been experiencing a shortness of breath and headaches particularly during exercise

Patient case 1: Further investigation

Sarah

Age: 24 years

Sex: Female

Hb: 9.2 g/dL; MCV: 81 fL; platelets: 1 x 10⁹/L; leukocytes: 8 x 10⁹/L **Blood tests**

Blood smear Evidence of thrombocytopenia

Clotting tests Normal PT, normal aPTT and normal fibrinogen

Biochemistry K⁺, Na⁺, renal function and LDH normal; ferritin 2 ng/mL

Immunology HIV, HBV and HCV negative

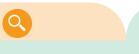
Patient case 1: First-line therapy

Age: 24 years

Treatment goals:

Sex: Female

- Secure platelet counts
- Minimum toxicity
- Normalize life


Sarah

What would you use as a first-line therapy?

- a. Dexamethasone
- **b.** Prednisone
- c. IVIg but only to manage major bleeding events
- d. Other

Patient case 1: First-line therapy

Sarah

Age: 24 years

First-line treatment

Sex: Female

Four cycles of dexamethasone 40 mg/d for 4 days

Treatment outcome Her platelets returned to normal

Patient case 1: Relapse

Sarah

Age: 24 years **Sex:** Female

Sarah presented with signs of relapse 5 months after her treatment ended

Symptoms Fatigue and a few petechiae

Blood tests Hb: 12.2 g/dL; MCV: 81 fL; platelets: 8 x 10⁹/L; leukocytes: 8 x 10⁹/L

Blood smear Evidence of thrombocytopenia

Clotting tests Normal PT, normal aPTT and normal fibrinogen

Biochemistry K⁺, Na⁺, renal function and LDH normal; ferritin 32 ng/mL

Immunology HIV, HBV and HCV negative

ANA, proteinogram and immunoglobulins all normal or negative

Patient case 1: Relapse

Age: 24 years **Sex:** Female

• Sarah presented with **signs of relapse** 5 months after her treatment ended

Sarah

What treatment would you use to manage her relapse?

- a. Three cycles of dexamethasone
- b. Prednisone 1 mg/kg/d
- c. 1 cycle of dexamethasone or IVIg followed by TPO-RA initiation
- d. TPO-RA without rescue treatment

Patient case 1: Relapse treatment

Sarah

Sarah

Age: 24 years
First-line treatment
and outcome

Second-line treatment and outcome

Sex: Female

One cycle of dexamethasone
One week later, her platelet count was 46 x 10⁹/L

Avatrombopag 20 mg/day Her platelets remained stable (85–105 x 10^9 /L) during 4 months of treatment

Patient case 1: Conception and pregnancy

Sarah

Age: 24 years **Sex:** Female

 At her most recent appointment, Sarah tells you that she and her husband are considering trying for a baby and would like to discuss how to best manage her ITP during conception and pregnancy

How would you best support this patient in her conception and pregnancy journey?

- a. Discuss the risks and benefits of remaining on avatrombopag during conception and pregnancy
- b. Suggest she switches to prednisone 20 mg/d, with the dose tapered to the minimum dose necessary
- c. Suggest she switches to IVIg 1-2 g/kg
- d. Suggest she stops treatment for ITP during conception and pregnancy with management relying on close observation
- e. Other

Patient case 2: Initial presentation

Michael

Age: 72 years

Presentation

Impact of symptoms

Sex: Male

Fatigue, frequent nosebleeds and purpura

- Michael helps his daughter with childcare for his three young grandchildren, who he collects from school twice a week
- Recently, he has been feeling too tired to care for his grandchildren, and is bruising more easily during play

Weight

88 kg (194 lbs)

Comorbidities

Atrial fibrillation, hypertension, type 2 diabetes mellitus

Current medications

Apixaban for atrial fibrillation Benazepril for hypertension Metformin for glucose control

Patient case 2: Further investigation

Age: 72 years **Sex:** Male

Blood tests Hb: 12.3 g/dL; MCV: 88 fL; platelets: 22 x 10⁹/L; leukocytes: 7.2 x 10⁹/L

Blood smear Evidence of thrombocytopenia

Biochemistry K⁺, Na⁺, renal function and LDH normal; ferritin 19 ng/mL

Immunology HIV, HBV and HCV negative

Michael

At this point, how would you manage Michael's anticoagulant therapy?

- a. Maintain anticoagulation with apixaban at full dose because his platelets are >20 x 10⁹/L
- b. Stop anticoagulant therapy because his platelets are <30 x 10⁹/L
- c. Maintain anticoagulation with apixaban at half dose because platelets are 20-50 x 109/L
- d. Discuss the risks and benefits of staying on anticoagulant therapy with Michael

Patient case 2: First-line therapy

Age: 72 years **Sex:** Male

Following review, Michael has discontinued apixaban

First-line ITP treatment Prednisone 60 mg/d

Treatment outcome Michael's platelet counts are not stable and fluctuate at his

weekly blood tests $(30-50 \times 10^9/L)$

Michael

How long do you recommend Michael continues with prednisone treatment before considering a second-line option?

- a. Up to 4 weeks
- **b.** 6–8 weeks
- c. Up to 16 weeks
- d. Other

Patient case 2: Halting prednisone

Michael

Age: 72 years **Sex:** Male

- After 3 weeks of treatment with prednisone, Michael's platelets have stabilized
- He has been told that his HbA1c is increasing
- You decide to start tapering Michael's prednisone dose; however, his platelet count drops every time the dose is reduced

What treatment would you consider in the second line?

- a. TPO-RA
- **b.** Fostamatinib
- c. Rituximab
- d. Other

Patient case 2: Long-term therapy

Michael

Age: 72 years **Sex:** Male

- Michael started treatment with fostamatinib 100 mg BID
- During the first 12 weeks of treatment, his platelet count ranged between 87 and 125 x 10⁹/L
- Michael's energy levels have improved, and his bruising has started to disappear
- He now feels able to resume caring for his grandchildren
- Michael is feeling well and is not experiencing diarrhoea or worsening high blood pressure

Patient case 2: Long-term therapy

Michael

Age: 72 years **Sex:** Male

- Michael started treatment with fostamatinib 100 mg BID
- During the first 12 weeks of treatment, his platelet count ranged between 87 and 125 x 10⁹/L
- Michael is feeling well and is not experiencing diarrhoea or worsening high blood pressure

What do you do next for patients demonstrating clinical response?

- a. Discontinue fostamatinib if at least one platelet count of ≥50 x 10⁹/L is recorded during 12 weeks of treatment
- b. Discontinue fostamatinib if platelet counts of ≥100 x 10⁹/L are maintained for at least 6 months without rescue treatment
- c. Continue long-term treatment unless the patient stops responding or experiences significant toxicity
- d. Other

Patient potentials: Emerging targeted treatments for ITP

Prof. David Kuter

Massachusetts General Hospital,
Boston, MA, USA

Novel therapies reducing platelet destruction

Platelet destruction by macrophages in ITP¹

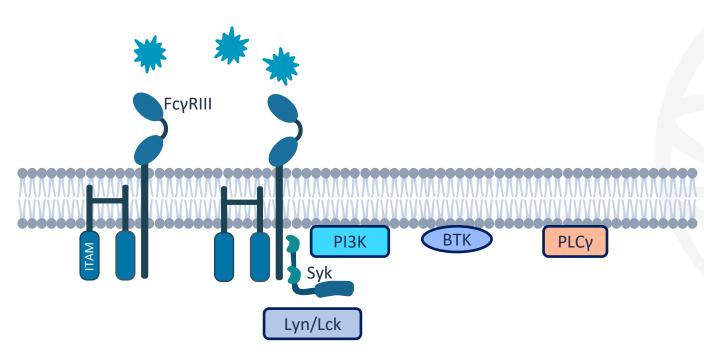


Figure adapted from Nimmerjahn F & Ravetch J. Ann Rev Immunol. 2008.

BTK, Bruton's tyrosine kinase; ITAM, immunoreceptor tyrosine-based activation motifs; ITP, immune thrombocytopenia; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; PLCy, phospholipase C y; R, receptor; Syk, spleen tyrosine kinase.

1. Kuter DJ. Br J Haematol. 2022;196:1311-28; 2. Nimmerjahn F & Ravetch J. Ann Rev Immunol. 2008;26:513-33.

. Anti-platelet antibodies appear¹

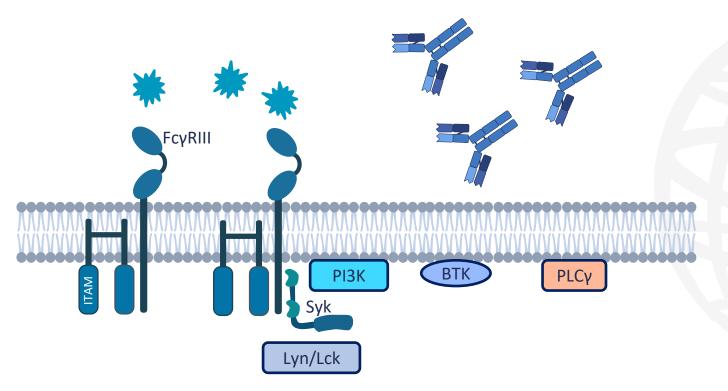


Figure adapted from Kuter DJ. Br J Haematol. 2022.

BTK, Bruton's tyrosine kinase; ITAM, immunoreceptor tyrosine-based activation motifs; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; PLCy, phospholipase C y; R, receptor; Syk, spleen tyrosine kinase.

Reduction of anti-platelet antibody production/survival

Current treatments¹

Splenectomy

Corticosteroids

Anti-CD20

Rituximab (off-label)

FcRn inhibitors

IVIg

Investigational agents

Anti-CD38²

- Daratumumab
- Mezagitamab (TAK-079)
- CMC313

FcRn inhibitors

Efgartigimod²

(accessed 14 November 2024).

Rozanolixizumab³

Anti-CD40

- IDEC-131⁴
- Hu5c8⁴
- Letolizumab⁵

IgG proteases^{6,7}

BAFF receptor inhibitors

• Ianalumab (VAY736)²

BAFF/APRIL receptor inhibitor

Povetacicept²

Immunoproteasome inhibitors

- Bortezomib^{5,8}
- KZR-616⁹

Underlined treatments are to be discussed, treatments in italics are no longer in development.

APRIL, A proliferation-inducing ligand; BAFF, B-cell activating factor; CD, cluster of differentiation; FcRn, neonatal Fc receptor; Ig, immunoglobulin; IV, intravenous.

1. Provan D, et al. Blood Adv. 2019;3:3780–817; 2. Al-Samkari H. Am J Hematol. 2024;99:2178–90; 3. Robak T, et al. Blood Adv. 2020;4:4136–46; 4. Patel VL, et al. Br J Haematol. 2008:141:545–8; 5. Audia S, Bonnotte B. J Clin Med. 2021;10:1004; 6. Johansson BP, et al. PLOS One. 2008;3:e1692; 7. Manasson J, et al. Presented at ASH 2024 Annual Meeting and Exposition, San Diego, CA, USA. 7–10 December 2024. Abstract 2562; 8. Clinicaltrials.gov. NCT05599880. Available at: https://clinicaltrials.gov/study/NCT05599880 (accessed 8 November 2024); 9. Clinicaltrials.gov. NCT04039477. Available at: https://clinicaltrials.gov/study/NCT04039477

CD38

Primitive multi-functional enzyme on the cell surface¹

Present on plasma cells, B and T cells, NK cells and many others¹

Enzyme¹

- NADase activity
- Alters Ca flux in many cells

Receptor¹

Activator of B and T cells

Loss of function mutations lead to immune deficiency¹

CD38 Effector NK cell Anti-CD38 cell Fcy receptor CDC C1q, C3b, C4b **ADCC** complement factors Target cell lysis C1q, C3b, C4b ADCP receptors Phagocytosis Programmed cell death Macrophage **cADPR** MM cell Inhibitor of enzymatic function NAD⁺

Figure adapted from Morandi F, et al. Front Immunol. 2018.

ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; cADPR, cyclic ADP ribose; CD, cluster of differentiation; CDC, complement-dependent cytotoxicity; mAb, monoclonal antibody; MM, multiple myeloma; NAD, nicotinamide adenine dinucleotide; NK, natural killer. 1. Piedra-Quintero ZL, et al. *Front Immunol.* 2020;11:597959; 2. Morandi F, et al. *Front Immunol.* 2018;9:2722.

Mezagitamab (TAK-079)

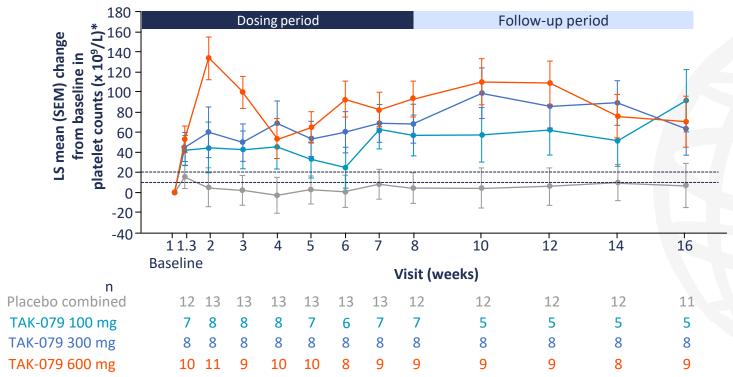
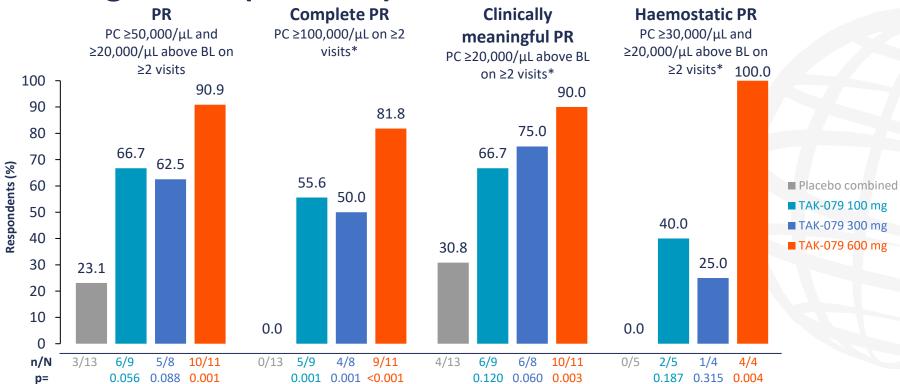
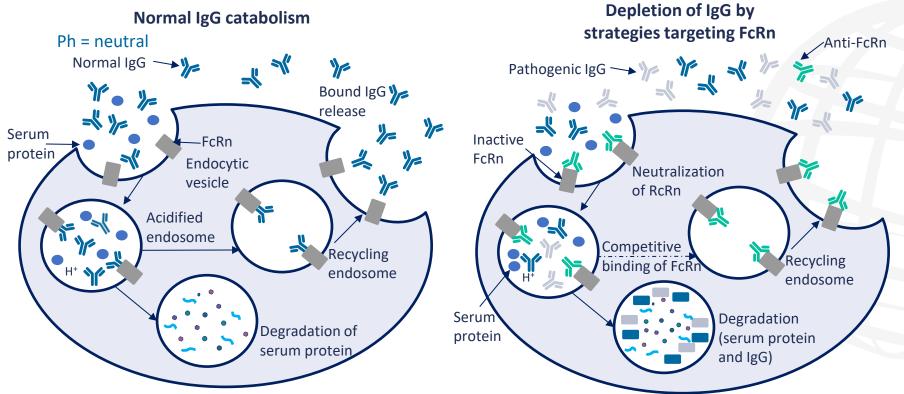


Figure reproduced from Kuter DJ et al. ISTH 2024. LB 01.1.

^{*}Mixed-effects model for repeated measures. Dotted horizontal reference lines indicate $\geq 20 \times 10^9/L$ and $\geq 10 \times 10^9/L$ change from baseline. LS, least squares; SEM, standard error of the mean.

Mezagitamab (TAK-079)

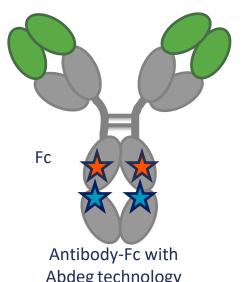



Figure reproduced from Kuter DJ et al. ISTH 2024. LB 01.1.

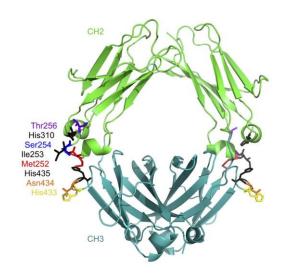
^{*}Without a dosing period-permitted rescue treatment in the previous 4 weeks and without other previous rescue therapy. For haemostatic PR, the percentages are based on all patients in the full analysis set with BL PC <15,000/µL. BL, baseline; PC, platelet count; PR, platelet response.

Kuter DJ, et al. Presented at: ISTH 2024, Bangkok, Thailand. 22–26 June 2024. Oral presentation LB 01.1.

FcRn inhibition reduces IgG half-life

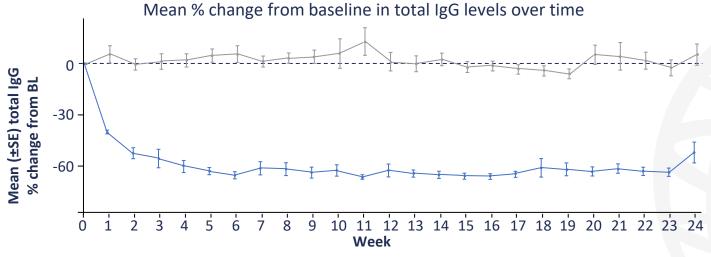


HAEMATOLOGY


Figure adapted from Kuter DJ. *Br J Haematol*. 2022. FcRn, neonatal Fc receptor; IgG, immunoglobulin G. Kuter DJ. *Br J Haematol*. 2022;196:1311–28.

Structure of efgartigimod (ARGX-113)

Abdegs – 'sticky' IgG with increased affinity for FcRn and slow 'off-rate' at pH 7¹

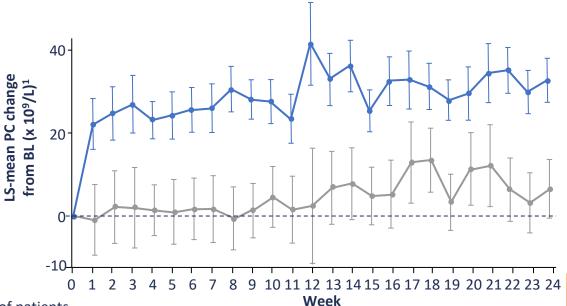


Efgartigimod: ADVANCE IV Study – IgG response

Efgartigimod 80 77 73 74 64 55 59 68 64 60 63 65 57 62 54 62 57 60 56 53 49 53 56 51 58 Placebo 45 42 45 42 36 35 39 38 34 37 34 34 31 26 31 30 29 28 30 28 30 28 31 28 39

Mean IgG levels decreased steadily over the first 4 weeks of treatment, which was sustained across time and aligned with platelet count responses

• After the initial decrease in IgG, mean maximum reductions from baseline remained ≥60% throughout the trial


Reprinted from *The Lancet*, 402, Broome C, et al, Efficacy and safety of the neonatal Fc receptor inhibitor efgartigimod in adults with primary immune thrombocytopenia (ADVANCE IV): a multicentre, randomised, placebo-controlled, phase 3 trial, 1648–59, copyright 2024, with permission from Elsevier.

BL, baseline; IgG, immunoglobulin G; IV, intravenous; SE, standard error.

Broome C, et al. *Lancet*. 2023;402:1648–59.

Efgartigimod: ADVANCE IV study – platelet response

Number of patients

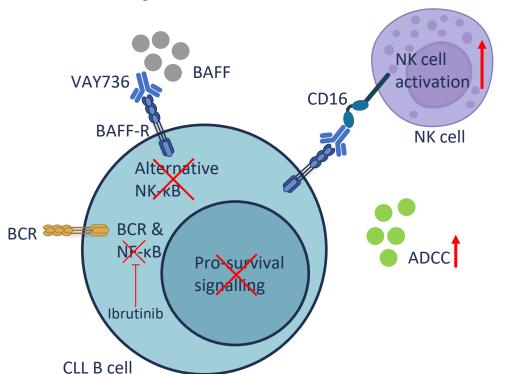
Efgartigimod 86 86 84 85 83 77 78 77 77 72 75 76 75 76 75 73 74 70 68 68 71 72 68 67

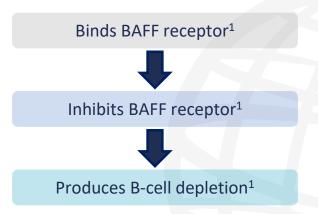
Placebo 45 44 45 43 44 42 40 42 40 40 38 40 38 36 38 38 37 37 37 37 38 37 38 37 39

Primary endpoint: Sustained platelet count response* achieved in 22% (17/78) of efgartigimod patients compared with 5% (2/40) of placebo patients (p=0.032).1

38.4% of efgartigimod treated patients compared with **11.1%** placebo reached a platelet count of \geq 30 x 10⁹/L platelets at week 1.²

The ADVANCE-SC (NCT04687072) study did not meet the primary endpoint or any prespecified secondary endpoints.³


Reprinted from *The Lancet*, 402, Broome C, et al, Efficacy and safety of the neonatal Fc receptor inhibitor efgartigimed in adults with primary immune thrombocytopenia (ADVANCE IV): a multicentre, randomised, placebo-controlled, phase 3 trial, 1648–59, copyright 2024, with permission from Elsevier.


*Platelet count ≥50 x 10°/L in 4 of 6 visits in weeks 19–24. BL, baseline; IV, intravenous; LS, least squares; PC, platelet count; SC, subcutaneous.

1. Broome C, et al. Lancet. 2023;402:1648–59; 2. Broome C, et al. Blood. 2023;142;689–91; 3. Al-Samkari H. Am J Hematol. 2024;99:2178–90.

BAFF receptor inhibition – ianalumab (VAY736)

Studies are underway in many disease areas, including multiple studies in ITP^{1–4}

Figure adapted from McWilliams EM, et al. Blood Adv. 2019.

ADCC, antibody-dependent cellular cytotoxicity; BAFF, B-cell activating factor; BAFF-R, BAFF receptor; BCR, B-cell receptor; CD, cluster of differentiation; CLL, chronic lymphocytic leukaemia; ITP, immune thrombocytopenia; NF-κB, nuclear factor kappa B; NK, natural killer.

1. McWilliams EM, et al. Blood Adv. 2019;3:447–60; 2. Al-Samkari H. Am J Hematol. 2024;99:2178–90; 3. Rebetz J, et al. ASH Annual Meeting and Exposition 2024, San Diego, CA, USA. 7–10 December 2024. Abstract 552; 4. Kuter DJ, et al. ASH Annual Meeting and Exposition 2024, San Diego, CA, USA. 7–10 December 2024. Abstract 710.

IgG cleaving enzymes

IgG-degrading activity common in pathogenic bacteria¹

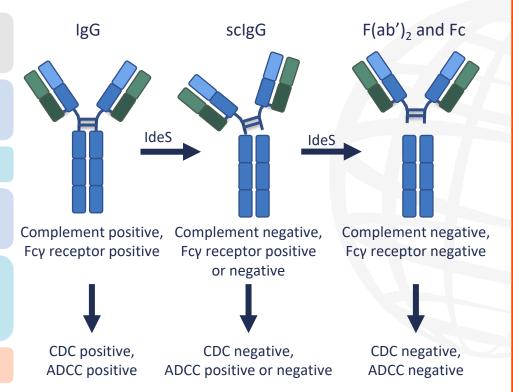
IdeS (imlifidase) is a recombinant cysteine protease of *S. pyrogenes* produced in *E. coli*¹

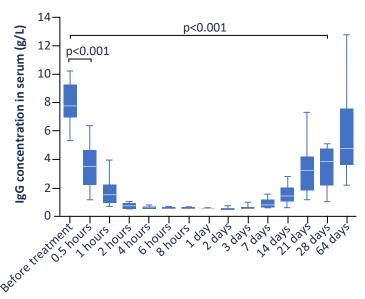
Cleaves all four human IgG subclasses¹

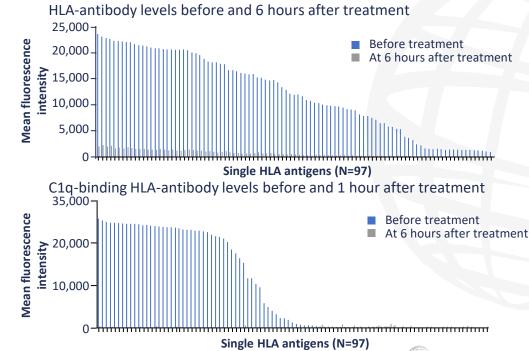
IdeS hydrolyzes human IgG at gly236 in the lower hinge region of the IgG heavy chains¹

Prevents IgG-mediated antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity¹

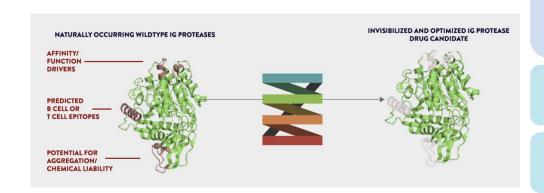
Highly immunogenic one-time use²




Figure reproduced from Jordan SC, et al. N Engl J Med. 2017.


ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; Gly, glycosine; IgG, immunoglobulin G; sc, single cleavage. 1. Jordan SC, et al. *N Engl J Med*. 2017;377:442–53; 2. Huang E, et al. *Am J Transplant*. 2022;22:691–7.

IdeS reduced or eliminated donor-specific antibodies and permitted HLA-incompatible transplantation in 24


of 25 patients

Figures reproduced from Jordan SC, et al. *N Engl J Med*. 2017. HLA, human leukocyte antigen; lgG, immunoglobulin G. Jordan SC, et al. *N Engl J Med*. 2017;377:442–53.

Invisibilizing IgG cleaving enzymes with Al

The promise of machine learning:
The Seismic IMPACT platform is being used to design IgG cleaving enzymes for chronic treatment of autoimmune diseases¹

Remove B- and T-cell epitopes to make proteins with increased invisibility^{1–4}

Elucidate pairwise/higher order residue dependencies to optimize drug properties^{1,2}

Remove chemical/manufacturing liabilities^{3,4}

Retain/augment enzymatic activity^{1,3}

Image taken from Manasson J, et al. ACR Convergence 2024. 0013.

Al, artificial intelligence; IgG, immunoglobulin G.

- 1. Pellerin A, et al. J Immunol. 2023;210(1_Supplement):238.22; 2. Newton AP, et al. J Immunol. 2023;210(1_Supplement):85:16;
- 3. Manasson J, et al. Presented at: ACR Convergence 2024, Washington, D.C., USA. 14–19 November 2024. Poster 0013;
- 4. Manasson J, et al. ASH Annual Meeting and Exposition 2024, San Diego, CA, USA. 7-10 December 2024. Abstract 2562.

Anti-platelet antibodies bind to platelets producing opsonized platelets and antibody-platelet complexes¹

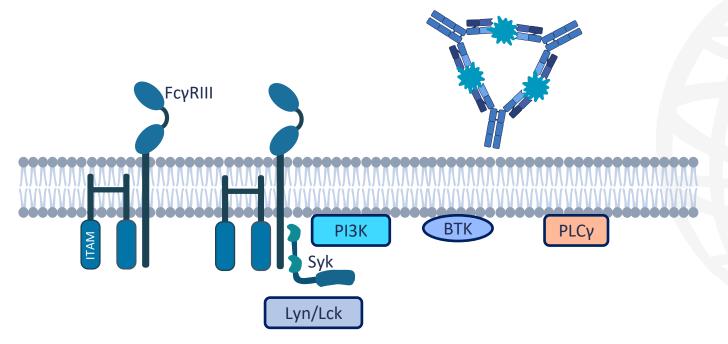


Figure adapted from Nimmerjahn F & Ravetch J. Ann Rev Immunol. 2008.

BTK, Bruton's tyrosine kinase; ITAM, immunoreceptor tyrosine-based activation motifs; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; PLCy, phospholipase C y; R, receptor; Syk, spleen tyrosine kinase.

Antibody-platelet complexes bind to FcRyIII resulting in macrophage activation^{1,2}

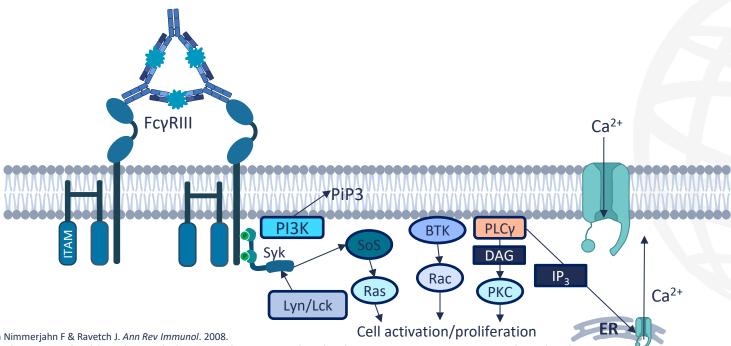


Figure adapted from Nimmerjahn F & Ravetch J. Ann Rev Immunol. 2008.

BTK, Bruton's tyrosine kinase; DAG, diacylglycerol; ER, endoplasmic reticulum; IP₃, inositol trisphosphate; ITAM, immunoreceptor tyrosine-kinase-based activation motifs; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; PiP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PLCy, phospholipase C y; R, receptor; SoS, son of sevenless; Syk, spleen tyrosine kinase.

1. Kuter DJ, et al. Br J Haematol. 2022;196:1311-28; 2. Nimmerjahn F & Ravetch J. Ann Rev Immunol. 2008;26:513-33.

Platelets are internalized and destroyed in activated macrophage

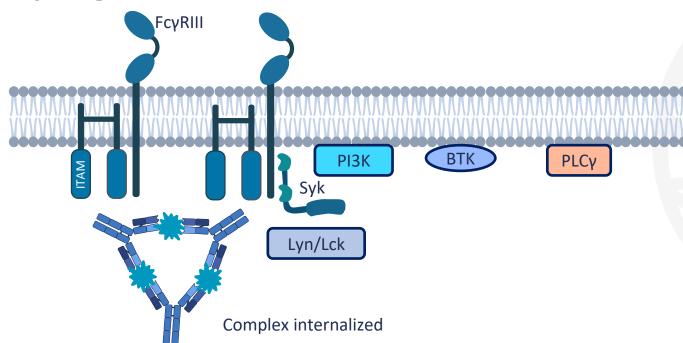


Figure adapted from Kuter DJ. Br J Haematol. 2022.

BTK, Bruton's tyrosine kinase; ITAM, immunoreceptor tyrosine-based activation motifs; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; PLCy, phospholipase C y; R, receptor; Syk, spleen tyrosine kinase.

Inhibitors of macrophage function

Current treatments¹

Corticosteroids

Vincristine/ vinblastine (off-label)^{2,3}

Splenectomy

IVIg

Syk kinase inhibitor

Fostamatinib

Investigational agents

Hyper-sialylated IVIg

M254⁴

BTK inhibitors

- Ibrutinib⁵
- Rilzabrutinib⁶

Recombinant Fc multimers

- PF-06755347 (GL-2045)⁷
- CSL730 (M230)8

Syk kinase inhibitors⁶

- Sovleplenib (HMPL-523)
- Cevidoplenib

Underlined treatments are to be discussed, treatments in italics are no longer in development.

BTK, Bruton's tyrosine kinase; IVIg, intravenous immunoglobulin; syk, spleen tyrosine kinase.

1. Provan D, et al. Blood Adv. 2019;3:3780-817; 2. FDA. Vincristine sulfate PI. Available at: https://bit.ly/4f88yhM (accessed 22 November 2024);

3. FDA. Vinblastine PI. Available at: https://bit.ly/3V6u7rx (accessed 22 November 2024); 4. Arroyo S, et al. *Blood*. 2019;134(Suppl. 1):1090; 5. Parish PC, et al. *Ann Hematol*. 2023;102:237–8; 6. Al-Samkari H. *Am J Hematol*. 2024;99:2178–90; 7. Zhang X, et al. *JCI Insight*. 2019;4:e121905; 8. Zuercher AW, et al. *Autoimmunity reviews*. 2019;18:102366.

Targets for inhibitors of macrophage function

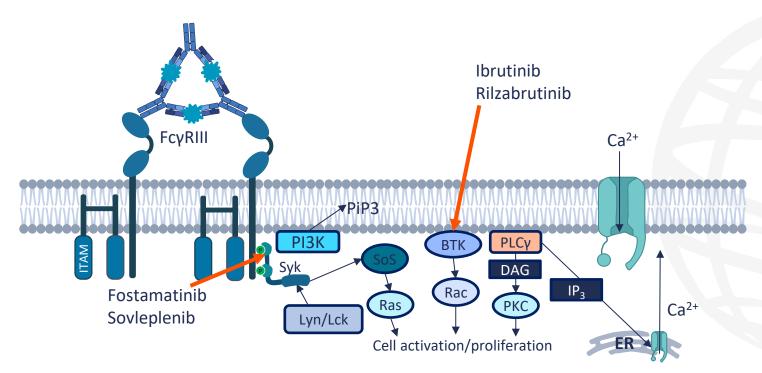
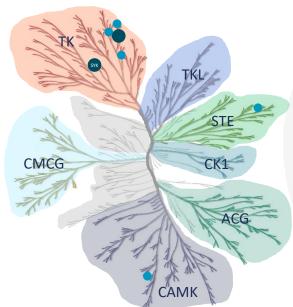



Figure adapted from Kuter DJ. Br J Haematol. 2022.

BTK, Bruton's tyrosine kinase; DAG, diacylglycerol; ER, endoplasmic reticulum; IP₃, inositol trisphosphate; ITAM, immunoreceptor tyrosine-kinase-based activation motifs; Lck, lymphocyte-specific protein tyrosine kinase; PI3K, phosphatidylinositol-3 kinase; Pi93, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PLCy, phospholipase C y; R, receptor; SoS, son of sevenless; Syk, spleen tyrosine kinase.

Kuter DJ, et al. *Br J Haematol*. 2022;196:1311–28



* Sovleplenib more specific and potent than fostamatinib

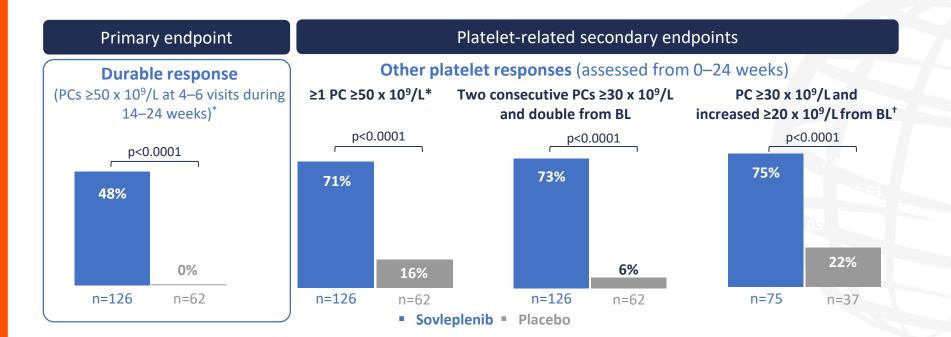
Fostamatinib (R406)¹

Syk IC₅₀: 50 nM²

Sovleplenib (HMPL-523)²

Syk IC₅₀: 30 nM²

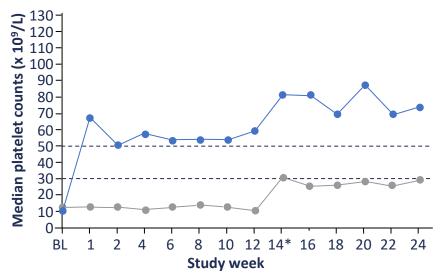
CAMK, calcium/calmodulin-dependent protein kinases; CK1, casein kinase 1; IC₅₀, half-maximal inhibitory concentration; Syk, spleen tyrosine kinase; TK, tyrosine kinase; TKL, tyrosine kinases.


1. Rolf MG, et al. Pharma Res Per. 2015;3:e00175; 2. Cai Y, et al. J Pharmacol Exp Ther. 2024;388:156-70.

IC₅₀ ≤50 nM

50<IC₅₀ ≤100 nM

Sovleplenib phase III: Primary endpoints

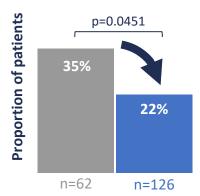


^{*}Not impacted by rescue treatment; \dagger For patients with a platelet count of <15 x 10 9 /L at baseline. BL, baseline; PC, platelet count.

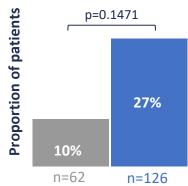
* Sovleplenib phase III: Platelet counts

Sovleplenib group 126 41 114 110 109 111 109 105 83 83 84 85 85 84 Placebo group 62 22 54 52 47 50 47 49 8 8 8 8 8 8

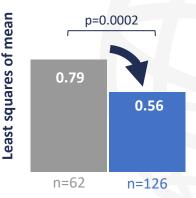
Figure reproduced from Hu Y, et al. Lancet Haematol. 2024.


Hu Y, et al. Lancet Haematol. 2024;11:e567-79.

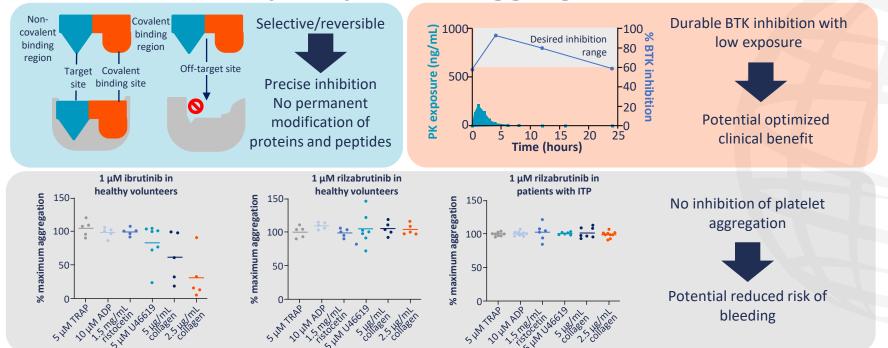
^{*}Most of the non-responders ended the double-treatment period at week 12 due to lack of efficacy. BL, baseline.


Sovleplenib phase III: Secondary outcomes

Rescue therapy

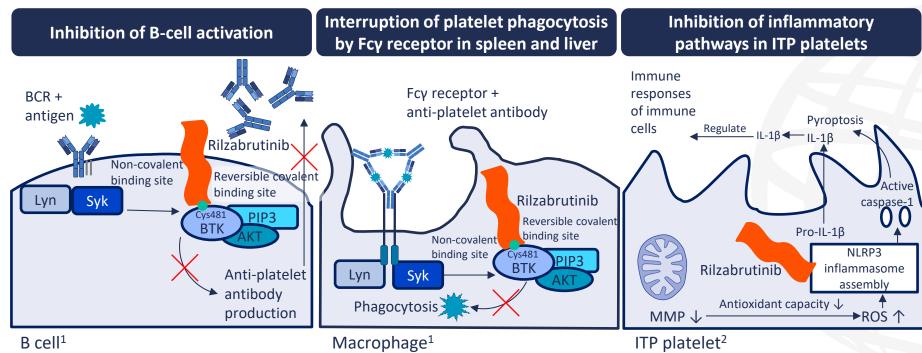

Sovleplenib = Placebo

Dose reduction/discontinuation rate of BL concomitant treatments


Two patients discontinued by themselves before the first dose

WHO bleeding score

Rilzabrutinib is an oral, reversible, potent BTK inhibitor and does not impact platelet aggregation


Figures reproduced from Langrish CL, et al. *J Immunol*. 2021 and Kuter DJ, et al. ISTH 2023. OC 65.1.

ADP, adenosine diphosphate; BTK, Bruton's tyrosine kinase; ITP, immune thrombocytopenia; PK, pharmacokinetics TRAP, thrombin receptor activating peptide.

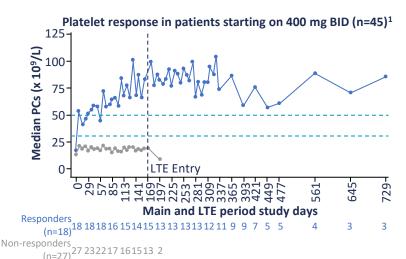
1. Langrish CL, et al. *J Immunol*. 2021;206:1454–68; 2. Kuter DJ, et al. Presented at: ISTH Congress 2023, Montreal, Canada. 24–28 June 2023. Presentation OC 65.1.

Rilzabrutinib immunological effects

BTK inhibitor impacts different mechanisms that target key aspects of ITP disease pathophysiology^{1–4}

Left-hand and centre figures reproduced from Kuter DJ, et al. *Ther Adv Hematol*. 2023. Right-hand figure reproduced from Wang S, et al. *Thromb Res*. 2021. AKT, protein kinase B; BCR, B cell receptor; BTK, Bruton's tyrosine kinase; IL, interleukin; ITP, immune thrombocytopenia; MMP, matrix metalloproteinases; NLRP3, NOD-like receptor protein; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; ROS, reactive oxygen species; Syk, spleen tyrosine kinase.

1. Kuter DJ, et al. Ther Adv Hematol. 2023;14:1–16; 2. Wang S, et al. Thromb Res. 2021;199:1–9; 3. Langrish CL, et al. J Immunol. 2021;206:1454–68;


4. Daak A, et al. ASH Annual Meeting and Exposition 2024, San Diego, CA, USA. 7-10 December 2024. Abstract 2482.

Rilzabrutinib phase I/II trial in previously treated ITP: Platelet responses with 400 mg BID

- Median treatment duration: 168 days (range: 10–188) for the main treatment period and LTE¹
- <u>18 patients (40%)</u> initiating 400 mg BID rilzabrutinib met the primary endpoint: ≥2 consecutive platelet counts ≥50 x 10⁹/L and increased ≥20 x 10⁹/L without the use of rescue medication in the 4 weeks prior to the latest elevated platelet count¹
- 16 of these 18 patients showed clinically relevant platelet counts of $\geq 50 \times 10^9/L$ at any point in the first 8 weeks of the

study treatment¹

Primary efficacy responders PCs (n=18) ¹	Median number of weeks	Duration of response, median % week
≥30 x 10 ⁹ /L	20.5	95
\geq 30 x 10 ⁹ /L with \geq 20 x 10 ⁹ /L above BL	18	86
≥50 x 10 ⁹ /L	14	72

Select TRAE (n=60), n (%)²	Grade 1	Grade 2	Grade 3/4
Diarrhoea	16 (27)	3 (5)	0
Nausea	16 (27)	2 (3)	0
Fatigue	5 (8)	1 (2)	0

Figure reproduced from Kuter DJ, et al. ASH 2021. Abstr. 14.

BID, twice a day; BL, baseline; ITP, immune thrombocytopenia; LTE, long-term extension; PC, platelet count; TRAE, treatment-related adverse event. 1. Kuter DJ, et al. Presented at: ASH Annual Meeting and Exposition 2021, Atlanta, GA, USA. 11–14 December 2021. Abstract 14; 2. Kuter DJ, et al. New Engl J Med. 2022;386:1421–31.

Pooled Luna 2 data: Overall and durable platelet responses by baseline variables

Patients with fewer prior and earlier lines of ITP therapy had higher responses

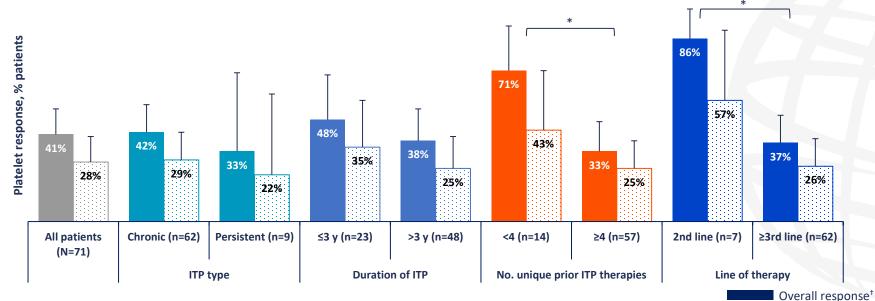


Figure reproduced from Kuter DJ, et al. ISTH 2024. OC 13.3.

Data cut-off for part A was 9 April 2021; part B was 31 January 2023.

Kuter DJ, et al. Presented at: ISTH 2024, Bangkok, Thailand. 22–26 June 2024. Oral presentation OC 13.3.

Durable response[‡]

^{*}Denotes p≤0.05 based on Fisher-exact method within the subgroup comparison; †Overall platelet response was defined as \geq 50 x 10 9 /L and increased \geq 20 x 10 9 /L from baseline; ‡Durable platelet response was \geq 8 of the last 12 platelet counts \geq 50 x 10 9 /L. ITP, immune thrombocytopenia.

Conclusions

ITP pathophysiology is complex and understanding it helps guide development of new treatments^{1,2}

ITP is a disorder of reduced platelet production¹

- Corticosteroids and TPO-RA increase platelet production^{3,4}
 - Hetrombopag: the newest TPO-RA

ITP is a disorder of increased platelet destruction²

- Reduce antiplatelet antibody: FcRn inhibition,² IgG proteases,⁵ BAFF receptor inhibitors,⁶ anti-CD38 (daratumumab, mezagitamab [TAK-079]⁶)
- Inhibit complement: sutimlimab, iptacopan^{2,6}
- Inhibit phagocytosis
 - Modified IVIg: Sialylated IgG,⁷ recombinant FC multimers⁸
 - Syk inhibition: sovleplenib (HMPL-523)⁶
 - o BTK inhibition: rilzabrutinib^{2,4}

BAFF, B-cell activating factor; BTK, Bruton's tyrosine kinase; CD, cluster of differentiation; FcRN, neonatal Fc receptor; Ig, immunoglobulin; ITP, immune thrombocytopenia; IV, intravenous; Syk, spleen tyrosine kinase; TPO-RA, thrombopoietin receptor agonist.

1. Althaus K, et al. *Hamostaseologie*. 2021;41:275–82; 2. Yan X, et al. *Discov Med*. 2024;1:57; 3. Kuter DJ. *Ann Blood*. 2021;6:7; 4. Tungjitviboonkun S, Bbumrungratanayos N. *Discov Med*. 2024;1:7; 5. Johansson BP, et al. *PLOS One*. 2008;3:e1692; 6. Al-Samkari H. *Am J Hematol*. 2024;99:2178–90; 7. Vattepu R, et al. *Front Immunol*. 2022;13:818736; 8. Ortiz DF, et al. *Sci Transl Med*. 2016;8:365ra158.

Exciting oral ITP presentations at ASH 2024

	Eltrombopag (TPO-RA)				
709	Efficacy findings in a phase 3, randomized trial of eltrombopag vs standard first-line treatment for newly diagnosed ITP in children	Monday 9 December			
	Ianalumab (BAFF receptor inhibitor)				
710	A phase 2 study of ianalumab in patients with primary ITP previously treated with at least two lines of therapy: Interim results from VAYHIT3	Monday 9 December			
Rilzabrutinib (BTK inhibitor)					
5	Efficacy and safety of oral BTKi rilzabrutinib in adults with previously treated ITP: A phase 3, placebo-controlled, parallel-group, multicenter study (LUNA 3)	Sunday 8 December			
TQB3473 (Syk inhibitor)					
711	Preliminary efficacy and safety results of TQB3473, a novel Syk inhibitor, in adult patients with ITP	Monday 9 December			
Terbutaline (β2-adrenergic receptor agonist)					
425	β2-adrenergic receptor agonist terbutaline regulates macrophage polarization via HMGB1 in ITP	Sunday 8 December			
MSC-C5b-9 (biomarker)					
712	Updated outcome from biomarker MSC-C5b-9-guided all-trans retinoic acid treatment for resistant/recurrent ITP: A multicenter, randomized, open-label, phase 3 clinical trial	Monday 9 December			

Panel discussion – Patient collaboration: Working together to improve outcomes

Prof. Cindy Neunert (Chair)
Columbia University,
New York, NY, USA

Prof. David Kuter

Massachusetts General Hospital,
Boston, MA, USA

Dr María Eva Mingot Castellano Hospital Universitario Virgen del Rocío, Sevilla, Spain

*Shared decision-making should be treated as an ongoing process throughout a patient's ITP journey

HCPs' expertise:

- ITP knowledge
- Treatment options
- Treatment side effects

- Experience of ITP
- Preferences

Patients understand the risks, benefits and consequences of different treatment options, as well as the characteristics and risks of their disease

Patients are empowered to make decisions about the care that is right for them, based on evidence and their preferences, beliefs and values

Shared decision-making can lead to greater decision satisfaction, improved communication and trust between the patient and their HCP, improved adherence to treatment plans and optimal experience of care

