What's new in primary ITP? Key updates from ASH 2024 Data updates July 2025 #### New data on approved TPO-RAs for ITP (1) | Treatment (N) | Study information | Outcomes | |--------------------------------------|--|--| | Avatrombopag
N=177 ^{1,2} | REAL-AVA 2.0 retrospective chart review study¹⁻⁴ Adult patients with primary ITP in the USA who initiated AVA between 1 July 2019 and 30 June 2024¹⁻⁴ Data cut-off: 31 December 2024^{1,2,4} | Median duration of AVA treatment: 12.8 months¹ Median duration of AVA treatment by type of primary ITP: acute* (n=39) 6.2 months; persistent (n=29)† 12.8 months; chronic (n=103)‡ 17.1 months³ Prior TPO-RA exposure: 66%² Patients switched from ELT (n=38) and ROM (n=41)⁴ Among patients who achieved/maintained PC response ≥30 x 10³/L (n=160): Median duration of response: 12.0 months; durability of response 95.7%¹ Durability of response by PC threshold: acute* 88.2%; persistent† 97.4%; chronic‡ 96.4%³ Achieved PC threshold when switched from ELT and ROM to AVA: 89.5% and 87.8%⁴ PC threshold achieved by similar proportion of patients with prior TPO-RA vs TPO-RA-naive² Among patients who achieved or maintained PC response ≥50 x 10³/L (n=153): Median duration of response: 12.1 months; durability of response 93.2%¹ Durability of response by PC threshold: acute* 87.4%; persistent† 91.1%; chronic‡ 95.2%³ Achieved PC threshold when switched from ELT and ROM to AVA: 86.8% and 85.4%⁴ PC threshold achieved by similar proportion of patients with prior TPO-RA vs TPO-RA-naive² Among patients who achieved or maintained PC response ≥100 x 10³/L (n=134): Median duration of response: 9.7 months; durability of response 75.5%¹ Durability of response by PC threshold: acute* 73.4%; persistent† 77.7%; chronic‡ 76.0%³ Achieved PC threshold when switched from ELT and ROM to AVA: 73.7% and 73.2%⁴ More TPO-RA-naive patients achieved PC threshold vs prior TPO-RA exposed (70% vs 87%, p<0.05)² | ^{*}Defined as <3 months; †Defined as 3—<12 months of disease duration at index; ‡Defined as ≥12 months of disease duration at index. ^{1.} Nagalla S, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PF1239; 2. Nagalla S, et al. Presented at: ISTH 2025, Washington, D.C., USA. 21–25 June 2025. Abstr OC 65.3; 3. Levy MY, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2244; 4. Chaturvedi S, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PF1236. AVA, avatrombopag; ELT, eltrombopag; ITP, immune thrombocytopenia; PC, platelet count; ROM, romiplostim; TPO-RA, thrombopoietin receptor agonist. ### New data on approved TPO-RAs for ITP (2) | Treatment (N) | Study information | Outcomes | | | | | |-----------------------|---|--|------------------|--------------------------|--------------------------|--------------------------| | Avatrombopag
N=147 | REAL-AVA 3.0 retrospective chart review study TPO-RA-naive adult | Median duration of AVA treatment at last follow-up: 8.1 months Proportion of patients who received concomitant medication whilst on AVA: 8.2%; all discontinued (n=9/12) or reduced (n=3/12) concomitant medication Proportion of patients who received rescue therapy whilst on AVA: 5.4% | | | | | | | patients with primary ITP
in the USA who initiated
AVA on or after 1 July | | Proportion of pa | atients with PC resp | onse (%) / durabilit | y of response (%) | | | | AVA on or after 1 July | | ≥30 x 10 ⁹ /L | ≥50 x 10 ⁹ /L | ≥75 x 10 ⁹ /L | | | 2019Data collected between12 November 2024 to 31 | BL PC <30 x
10 ⁹ /L (n=124) | 100.0 / 89.1 | 95.2 / 80.7 | 87.9 / 68.7 | 73.4 / 61.6 | | | December 2024 | BL PC ≥30-<50 x
10 ⁹ /L (n=20) | NA | 100.0 / 85.1 | 90.0 / 75.1 | 75.0 / 64.8 | | | | BL PC ≥50-<75 x
10 ⁹ /L (n=2) | NA | NA | 100.0 / 95.1 | 100.0 / 95.1 | #### New data on approved TPO-RAs for ITP (3) | Treatment (N) | Study information | | | | Outcome | es | | | | |-----------------------|--|--|--|------------------------------|------------------------------|-----------------------------------|----------------|-------------------------------------|----------------| | Avatrombopag
N=200 | ADOPT study (phase IV)^{1,2} Adult patients ≥18 years
with ITP in Europe who
were initiating or already | Prior TAged ≥ | ease phase: ND [†]
PO-RA exposure
65 years: (n=73
cumulative num | e: ELT only (
); comorbic | n=58); ROM
lities:* (n=89 | only (n=45); I
9) ² | | // (n=25) ²
nary endp | | | | being treated with AVA^{1,2}Data cut-off date: 12 | ≥65 yrs | Comorbidities | ELT only | ROM only | ELT + ROM | ND | Р | С | | | November 2024 ^{1,2} | 50.1 | 50.8 | 52.1 | 51.4 | 46.3 | 52.1 | 49.7 | 51.1 | | | Patients with 12 months of follow-up data | • Mean cumulative number of weeks with PC ≥50 x 10 ⁹ /L: ^{1,2} | | | | | | | | | | reported ¹ | ≥65 yrs | Comorbidities | ELT only | ROM only | ELT + ROM | ND | Р | С | | | | 47.0 | 48.5 | 50.2 | 46.5 | 42.9 | 52.1 | 44.1 | 48.4 | | | | • Propoi | tion of patients | on concon | nitant ITP tre | atments and | rescue th | erapy: ^{1,2} | | | | | ≥65 yrs | Comorbidities | ELT only | ROM only | ELT + ROM | ND | Р | С | | | | 39.7%;
11.0% | 39.3%;
10.1% | 39.7%;
6.9% | 26.7%;
15.6% | 56.0%;
20.0% | 26.3%;
5.3% | 42.1%;
21.1% | 35.8%;
9.9% | ^{*}Comorbidities considered to be risk factors for thromboembolic events including obesity/overweight, cardiovascular disease, chronic renal disease, smoking/alcohol use, oral contraceptive use, personal/family history of thromboembolic events, recent major surgery or cancer; †<3 months from ITP diagnosis to first AVA treatment; ‡ 3–12 months from ITP diagnosis to first AVA treatment. AVA, avatrombopag; C, chronic; ELT, eltrombopag; ITP, immune thrombocytopenia; ND, newly diagnosed; P, persistent; PC, platelet count; ROM, romiplostim; TPO-RA, thrombopoietin receptor agonist. ^{1.} Ghanima W, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2231; 2. Mingot Castellano ME, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2242. ### New data on approved TPO-RAs for ITP (4) | Treatment (N) | Study information | Outcomes | |-----------------------|---
--| | Avatrombopag
N=268 | AVESPA retrospective study conducted by the Spanish ITP group Patients with ITP who began treatment with AVA between July 2022 to January 2024 and previously treated with another TPO-RA | Median follow-up: 47 months Patients previously treated with TPO-RA: 59.3% (ELT 40.9%; ROM 11.9%; both 47.2%) Most frequent reason for switching to AVA: loss of response (35.8%), low efficacy and/or CS dependence (28.3%) Proportion of patients with previous TPO-RA exposure who responded to AVA at intermediate doses (<280 mg/week): 43% Higher proportion of patients who were TPO-RA-naive responded to AVA vs those with previous TPO-RA exposure: 79.7% vs 92.4% (p<0.001) No difference in response based on previous TPO-RA | #### New data on approved TPO-RAs for ITP (5) | Treatment (N) | Study information | Outcomes | |-----------------------------------|--|--| | Fostamatinib ¹
N=95 | GIMEMA ITP1122 retrospective study (phase IV) Patients with persistent/chronic ITP who received ≥1 dose of FOSTA outside of clinical trials between 1 October 2021 and 1 April 2023 | Proportion of patients who received FOSTA as fourth- or later-line treatment: 85% Proportion of patients who previously received >1 TPO-RA: 54% Proportion of patients who received FOSTA concurrently with other anti-ITP medications: 31% at baseline; 19% at 6 months Primary endpoint – Proportion of patients still receiving FOSTA at 6 months: 45% (CR in 22%) Most frequently reported TRAEs: diarrhoea (37.5%), transaminitis (21.8%), hypertension (21.8%) and neutropenia (9.3%) | | Fostamatinib ²
N=33 | Japanese patients with ITP
treated with FOSTA (phase III;
NCT04132050) Three-year efficacy and safety
data reported | Proportion of patients achieving PC >50 x 10⁹/L:* 48% Median total duration of PC >50 x 10⁹/L: 589 days Proportion of patients achieving PC >30 x 10⁹/L:* 55% Median total duration of PC >30 x 10⁹/L: 727 days Most common TEAEs: diarrhoea, hypertension | ^{*}At two consecutive visits with ≥28 days apart whilst receiving FOSTA. AE, adverse event; BID, twice daily; CR, complete response; FOSTA, fostamatinib; ITP, immune thrombocytopenia; QD, once daily; TEAE, treatment-emergent AE; TPO-RA, thrombopoietin receptor agonist; TRAE, treatment-related AE. ^{1.} Lucchini E, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2233; 2. Kuwana M, Tomiyama Y. Int J Hematol. 2025;121:356–62. ### New data on approved TPO-RAs for ITP (6) | Treatment (N) | Study information | Outcomes | |---|---|---| | Romiplostim for
1 year, followed
by tapering and
follow-up for ≤1
year (N=40) | Prospective STIP trial in the Netherlands to determine rate of SROT* Adults with persistent/chronic ITP who failed at least first-line treatment with CS or IVIg | Primary outcome: probability of SROT at 1 year after tapering (n=25): 23.6% SCROT[†] among SROT patients with complete follow-up: 80% (n=4/5) Probability of being treatment free at 1 year after tapering: 46.3% Proportion of patients who restarted romiplostim and responded again: 83.3% (n=10/12) Patients with SROT reached higher PCs during treatment and had lower stable doses at start of tapering vs NSR Safety Mild bleeding (grade 1) reported in patients with an NSR after tapering: 41.2% (n=7/17) Patients hospitalized for severe thrombocytopenia (<1 x 10⁹/L): n=1 (with mild bleeding symptoms) Qol D-ITP: increase in 3/11 domains for treatment-free patients at study end; increase in 4/11 domains for those who were not; both groups improved in fatigue and psychological health domains SF-36: Minor changes reported | CS, corticosteroids; D-ITP, Dutch ITP; ITP, immune thrombocytopenia; IVIg, intravenous immunoglobulin; NSR, non-sustained response; PC, platelet count; SCROT; complete SROT; SF-36; short-form 36; SROT, sustained response off treatment; TPO-RA, thrombopoietin receptor agonist. ^{*}PC >30 x 109/L, no bleeding symptoms and no need for treatment; †PC>100 x 109/L at all visits. ### New data on approved TPO-RAs for ITP (7) | Treatment (N) | Study information | Outcomes | |---|--|--| | rhTPO,
romiplostim
and
eltrombopag
7 RCTs involving
375 paediatric
patients | Systematic review and network meta-
analysis to evaluate and compare the
efficacy and safety of rhTPO,
romiplostim and eltrombopag in
paediatric patients with ITP Treatment efficacy ranked using
SUCRA* | Romiplostim (OR 17.57, 95% CI 4.90–63.03), eltrombopag (OR 5.34, 95% CI 2.50–11.39) and rhTPO (OR 5.32, 95% CI 2.03–13.96) were all significantly more effective in achieving ORR vs placebo (p<0.001) SUCRA ranking for ORR: Romiplostim had highest probability of being the most effective intervention (SUCRA = 0.96) followed by rhTPO (SUCRA = 0.52), eltrombopag (SUCRA = 0.52) and placebo (SUCRA = 0.00) SUCRA rankings for serous adverse events: rhTPO had the highest probability of being the safest intervention (SUCRA = 0.78) followed by eltrombopag (SUCRA = 0.66), placebo (SUCRA = 0.44) and romiplostim (SUCRA = 0.12) | OR, odds ratio; ORR, overall response rate; RCT, randomized controlled trial; rh-TPO, recombinant human TPO; SUCRA, surface under the cumulative ranking curve; TPO, thrombopoietin; TPO-RA, TPO receptor agonist. ^{*}Values closer to 1 indicate higher likelihood of being the most effective treatment. ### New data on approved TPO-RAs for ITP (8) #### Treatment (N) Study information Outcomes #### **TPO-RA** 417 treatment courses analysed* - Retrospective, multicentre study - Adult patients with ITP in Europe who initiated TPO-RAs between January 2014 and December 2014 #### Reasons for discontinuation of first TPO-RA (incidence 49.8%): - Test for therapy-free remission: 29.3% - Due to AEs: 16.5% - Due to inadequate efficacy: 8.3% #### **Following TPO-RA discontinuation:** | | First course | Second course | Third course | |-------------------------------------|--------------|---------------|--------------| | Proportion of patients who did not | 51.7% | 40.3% | 26.1% | | require additional ITP treatment | | | | | Proportion of patients
who required | 28.0% | 34.8% | 37.5% | | reintroduction of TPO-RA | | | | Patients who received a TPO-RA for >1 year were significantly less likely to require reintroduction vs those treated for shorter durations (p=0.045) | | Proportion achieving SROT [†] | | | | | |--------|--|--------------------------|---------------------------|--|--| | Course | <30 x 10 ⁹ /L | <50 x 10 ⁹ /L | <100 x 10 ⁹ /L | | | | First | 29.5% | 24.7% | 21.4% | | | | Second | 27.7% | 22.1% | 21.2% | | | | Third | 18.2% | 13.5% | 13.5% | | | Significant predictors of SROT: PCs at 6 months from TPO-RA initiation; PC at diagnosis inversely correlated with likelihood of achieving SROT ^{*267} first-line, 113 second-line, 37 third-line TPO-RA; †defined as PCs maintained above stated value for at least 6 months. AE, adverse event; ITP, immune thrombocytopenia; PC, platelet count; SROT, sustained response off treatment; TPO-RA, thrombopoietin receptor agonist. Lozano M. et al. Presented at: EHA 2025. Milan. Italv. 12–15 June 2025. Abstr PF1235. #### New data on approved TPO-RAs for ITP (9) | Treatment (N) | Study information | Outcomes | |-----------------------------------|--|--| | TPO-RA^{1,2} N=267 | Retrospective analysis in Europe^{1,2} Adult patients with ITP who initiated TPO-RA between 2014 and 2018^{1,2} At treatment initiation patients were stratified into two age groups, patients <65 years n=164; | Comorbidities more prevalent in older vs younger population: hypertension (p<0.0001), diabetes (p<0.0001); cancer (p<0.001); use of anti-thrombotic therapy (p<0.0001); vascular events (p<0.001)¹ Prevalence of ND ITP: higher in older vs younger patients (p=0.0019)¹ Median time from diagnosis to TPO-RA initiation: shorter in older vs younger patients (p=0.004)¹ Time to achieve PC >30 x 10⁹/L and >50 x 10⁹/L: shorter in older vs younger patients (p=0.0038 and p=0.0012)¹ Response rates: lower in older vs younger patients (89.9% vs 96.1%, p=0.0200)¹ | | | patients ≥65 years n=103¹ • Patients received ROM (n=84) or ELT (n=183)² | Primary reason for TPO-RA initiation: refractoriness or loss of response to prior therapy (40.4%)² Median duration of first TPO-RA treatment: 13 months (ROM, 8.5 months; ELT, 16 months)² No significant association between TPO-RA selection and several patient characteristics: age, sex, comorbidities,* disease phase, history of malignancy or thrombosis, or response to previous therapies (p>0.05)² Bleeding severity: higher in patients treated with ROM vs ELT at TPO-RA initiation (p<0.05)² Reduction in unscheduled hospital visits by 52.7% over 6 months since starting TPO-RA² | ELT, eltrombopag; ITP, immune thrombocytopenia; ND, newly diagnosed; PC, platelet count; ROM, romiplostim; TPO-RA, thrombopoietin receptor agonist. ^{*}Liver disease, diabetes and hypertension. #### New data on emerging ITP treatments (1) | Treatment (N) | Study information | Outcomes | |---------------------|--|--| | Daratumumab
N=21 | DART trial (phase II) Adult patients with primary ITP and PC ≤30 x 10⁹/L (15-30 x 10⁹/L for safety run in) with prior CS and rituximab and/or TPO-RA Patients enrolled between January 2021 and March 2024 Safety run in (n=3): 4 x weekly SC daratumumab injections Cohort 1 (n=9): 8 x weekly injections Cohort 2 (n=9): 8 x weekly injections, followed by 2 injections every other week | Primary endpoint – response at week 12/16:* all patients, n=10/21 (48%); safety run in, 2/3; cohort 1, 4/9 (44%); cohort 2, 4/9 (44%) Sustained response at week 24:[†] all patients, n=8/21 (38%); cohort 1, 4/9 (44%); cohort 2, 3/9 (33%) Most common TEAE: Infections (38%) Most common TRAEs: n=9; IRRs (grade 2, 9.5%; grade 3, 4.7%), injection site reactions (grade 1, 9.5%), infections (grade 1 and 2, 4.7% each), diarrhoea (grade 2, 9.5%) Grade 3 SAEs: n=2 (1 patient with IRR; 1 patient with severe SARS-CoV-2-infections with acute renal failure) SF-36v1 scores: Numerical improvement in all dimensions after completion of treatment | ^{*}Two consecutive PC \geq 50 x 10^9 /L (measured \geq 24 hours apart) and assessed \geq 4 weeks after the last daratumumab injection (week 12 for safety run-in and cohort 1; week 16 for cohort 2); †Two consecutive PC \geq 50 x 10^9 /L (measured \geq 24 hours apart). AE, adverse event; CS, corticosteroid; IRR, infusion-related reaction; ITP, immune thrombocytopenia; PC, platelet count; SAE, serious AE; SC, subcutaneous; SF-36v1, 36-item short form survey version 1; TEAE, treatment-emergent AE; TPO-RA, thrombopoietin receptor agonist; TRAE, treatment-related AE. ## New data on emerging ITP treatments (2) | Treatment (N) | Study information | Outcomes | |---------------------|--|---| | Mezagitamab
N=41 | Phase II study Patients with chronic or persistent ITP Part A (n=25): participants randomized 1:1:1 to mezagitamab 100 mg or 300 mg or placebo Part B (n=16): participants randomized 2:1 to mezagitamab 600 mg or placebo SC treatment QW for 8 doses At week 16 participants were unblinded and could receive mezagitamab in OLE | Duration of platelet response* at week 16: mezagitamab 100 mg, 6.0 weeks; mezagitamab 300 mg, 8.0 weeks; mezagitamab 600 mg, 10.6 weeks; placebo, 1.1 weeks Mean increase in duration of platelet response* with mezagitamab vs placebo: 100 mg: 4.91 ± 1.6 (SE) weeks; 300 mg: 6.9 ± 2.1 weeks; 600 mg 9.6 ± 1.7 weeks Clinically meaningful improvement* in mean change from BL ITP-PAQ scale scores in mezagitamab groups but not placebo: fatigue/sleep (p=0.01); physical activity (p=0.02); symptoms (p=0.02); physical health – bother (p=0.03); overall QoL (0.04); social activity (p=0.005) | ^{*}Number of weeks with PC ≥50 x 109/L; †Defined as mean change exceeding the minimal important difference threshold of 8 or 10 points. BL, baseline; ITP, immune thrombocytopenia; ITP-PAQ, ITP Patient Assessment Questionnaire; OLE, open label extension; QW, once weekly; SC, subcutaneous; SE, standard error. Kuter DJ, et al. Presented at: ISTH 2025, Washington, D.C., USA. 21–25 June 2025. Abstr OC 75.3. ### New data on emerging ITP treatments (3) | Treatment (N) | Study information | Outcomes | |--
--|---| | Efgartigimod^{1,2} N≈63 | ADVANCE NEXT trial (phase III) Adult patients ≥18 years with primary ITP (>12 months') who received ≥1 prior ITP therapy* Double-blind treatment period (24 weeks): patients randomized 2:1 to efgartigimod IV 10 mg/kg or placebo Treatment with ≥4 QW infusions; may be adjusted to Q2W based on PC response Open-label treatment period (52 weeks): efgartigimod IV 10 mg/kg Second open-label treatment period (52 weeks): to continue receiving efgartigimod Primary endpoint: extent of disease control[†] | | | Efgartigimod ^{3,4}
N=131 | ADVANCE IV trial (phase III) Adult patients with persistent or chronic primary ITP, with an average of two PCs <30 x 10⁹/L during screening randomized to efgartigimod IV or placebo | Primary endpoint – proportion of patients with sustained PC response: Efgartigimod 25.6% vs placebo 6.7% (p=0.0108) Mean immature platelet fraction at week 24 (n=40): decreased with efgartigimod vs no decrease with placebo | ^{*}Including corticosteroids; IVIg; anti-D immunoglobulin in non-splenectomized Rho(D)-positive patients; TPO-RAs; or rituximab; †Defined as number of cumulative weeks during the double-blind treatment period with PC of ≥50 x10⁹/L; ‡defined as PCs ≥50 x 10⁹/L for ≥4 or 6 visits between weeks 19 and 24. ^{1.} Al-Samkari H, et al. Presented at: ISTH 2025, Washington, D.C., USA. 21–25 June 2025. Abstr PB0337; 2. Al-Samkari H, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PB3668; lg, immunoglobulin; ITP, immune thrombocytopenia; IV, intravenous; PC, platelet count; Q2W, once every 2 weeks; QW, once weekly; TPO-RA, thrombopoietin receptor agonist. #### New data on emerging ITP treatments (4) | Treatment (N) | Study information | Outcomes | |------------------------|--|--| | Rilzabrutinib
N=202 | LUNA3 phase III study Adult patients with persistent/chronic ITP DB part (24 weeks): randomized 2:1 to 400 mg BID rilzabrutinib or placebo* OL period (28 weeks): 400 mg BID rilzabrutinib only LTE: 400 mg BID rilzabrutinib only | Data from DB period: Primary end point – durable platelet response: observed in n=31 (23%) rilzabrutinib vs n=0 placebo patients (p<0.0001) Median time to first platelet response: rilzabrutinib arm 36 days; placebo arm NR (p<0.0001); rilzabrutinib responders 15 days PCs ≥50 x10⁹/L for ≥4 of last 8 PCs in patients completing 24 weeks of treatment: rilzabrutinib 55%; placebo 0% Need for rescue therapy: significantly reduced with rilzabrutinib (-52% p=0.0007) Change from baseline in IBLS score at week 25: significantly improved with rilzabrutinib vs placebo (p=0.0006) Change from baseline in physical fatigue at week 13: significantly improved with rilzabrutinib vs placebo (p=0.0114) Most common TRAEs for rilzabrutinib vs placebo: diarrhoea (23% vs 4%), nausea (17% vs 6%), headache (8% vs 1%), abdominal pain (6% vs 1%) | ^{*}After initial DB 12 weeks, non-responders could join the OL or discontinue; †Defined as PCs ≥50 x 10⁹/L for two-thirds or more of ≥8 non-missing weekly scheduled platelet measurements during the last 12 weeks in the absence of rescue therapy and ≥2 of the PCs ≥50 x 10⁹/L had to be during the last 6 weeks of the 24-week blinded treatment period. BID, twice daily; DB, double-blind; IBLS, ITP bleeding scale; ITP, immune thrombocytopenia; LTE, long-term extension; NR, not reached; OL, open label; PC, platelet count; TRAE, treatment-related adverse event. #### New data on emerging ITP treatments (5) | Treatment (N) | Study information | Outcomes | |---|---|---| | Rilzabrutinib OL period n=180 LTE period n=69 | LUNA3 phase III study^{1,2} Adult patients with persistent/chronic ITP^{1,2} DB part (24 weeks): randomized 2:1 to 400 mg BID rilzabrutinib or placebo*^{1,2} OL period (28 weeks): 400 mg BID rilzabrutinib only^{1,2} LTE: 400 mg BID rilzabrutinib only^{1,2} Data cut-off: 15 October 2024² | Data from OL period¹ Durable response achieved in:‡ 27%, including 30% (n=35/115) receiving rilzabrutinib DB (responders/non-responders) and 22% (n=14/65) placebo DB Complete platelet response:§ 23% Cumulative stable platelet response:¶ 36/67 (54%) Mean changes from baseline in physical fatigue and IBLS bleeding score: improved with rilzabrutinib at weeks 25 and 53 Most common TRAEs: diarrhoea and nausea (9% each, mainly low grade) Data from LTE period² PCs ≥50 x 10°/L or between 30–50 x 10°/L and doubled from baseline: maintained for average of 76% of weeks based on 12 months of LTE assessments Patients who achieved complete platelet response:¶ 54% Most common TRAEs (all grade 1 or 2): Nausea (7%), diarrhoea (4%), upper abdominal pain (3%) | ^{*}After initial DB 12 weeks, non-responders could join the OL or discontinue; †Eligibility for the LTE: if during the last 8 weeks of the 28-week OL period, PCs were ≥50 x 10°/L or ≥30 x 10°/L and double from baseline at ≥50% of visits without rescue therapy;² ‡PCs ≥50 x 10°/L for ≥two-thirds of the last 16 of 28 OL weeks without rescue therapy; §PCs ≥100 x 10°/L for ≥10 year. ||Complete response was platelet counts ≥100 x 10°/L on two consecutive visits at least 5 days apart and no bleeding or rescue ITP therapy use on or through these visits. BID, twice daily; DB, double-blind; IBLS, ITP bleeding scale; ITP, immune thrombocytopenia; LTE, long-term extension; OL, open label; PC, platelet count; TRAE, treatment-related adverse event. Kuter DJ, et al. Presented at: ETH 2025, Washington, D.C., USA. 21–25 June 2025. Abstr PB0376; 2. Ghanima W, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr S310. ### New data on emerging ITP treatments (6) | Treatment (N) | Study information | Outcomes | |--------------------|---
--| | Ripertamab
N=20 | Multicentre, single-arm, dose exploration, prospective trial Patients with relapsed/refractory ITP and treated with ripertamab 100 mg (n=9) or 200 mg (n=11) weekly for 4 consecutive weeks Date collected between September 2022 and December 2024 | Median follow-up: 7 months Median time of initial response: 2 weeks Median duration of response: 3 months Response 1 month after first dose: complete response:* n=8; partial response:† n=5; ORR: 65% Response 2 months after first dose: complete response:* n=8; partial response:† n=6; ORR: 70% 8-week ORR: numerically higher in 100 mg vs 200 mg group (p=0.157) Adverse events: IRR (low fever in 15% of patients) during first dose, upper respiratory tract infection (5%) | #### New data on emerging ITP treatments (7) | Treatment (N) | Study information | Outcomes | |----------------------|--|---| | CM313
N=45 | Phase II trial Adult patients with persistent or chronic ITP who have failed or relapsed after glucocorticoid therapy and had previously responded to first-line treatment Patients enrolled between 16 January and 11 June 2024 | Primary endpoint – overall response* at week 8: CM313 83% vs placebo 20% (p<0.0001) Median time to PC ≥50 x 10⁹/L: CM313 1 week vs placebo NR (p<0.0001) Median cumulative duration of PC ≥50 x 10⁹/L: CM313 18 weeks vs placebo 3 weeks (p=0.0035) Proportion of patients who experienced TEAEs: CM313 83% vs placebo 80% Most frequent TEAEs: IRRs, petechiae, upper respiratory tract infections | ### New data on emerging ITP treatments (8) | Treatment (N) | Study information | Outcomes | |-------------------|---|--| | lanalumab
N=41 | VAYHIT3 (phase II) Adult patients with primary ITP and PC <30 x 10 ⁹ /L, previously treated with at least a CS and TPO-RA (no splenectomy) with a loss of response, no or insufficient response or intolerance to last ITP therapy Data cut-off: 5 February 2025 | Primary endpoint – proportion of patients achieving ConfR*: 44% Median time to ConfR: 6 weeks Proportion of patients achieving stable response: 24% Achieved stable response at week 25: 56% Rate of any-grade bleeding events: 59% at baseline; 22% at week 25; 10% at week 33 Proportion of patients who experienced a TRAE: 37% Proportion of patients who experienced grade ≥3 TRAE: 2% Most frequent AEs: Headache (22%), confusion (20%), petechiae (20%), purpura (20%), IRR (15%), URTI (12%) | AE, adverse event; ConfR, confirmed response; CS, corticosteroid; IRR, infusion related reaction; ITP, immune thrombocytopenia; IV, intravenous; PC, platelet count; Q4W, every 4 weeks; TPO-RA, thrombopoietin receptor agonist; TRAE, treatment-related AE; URTI, upper respiratory tract infection; WHO, World Health Organization. Bradbury C, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr S312. ^{*}Defined as PC of $\geq 50 \times 10^9 / L$ at ≥ 2 consecutive assessments ≥ 7 days apart between week 1 and week 25 with no rescue therapy within ≥ 4 weeks of PC assessment or start of new therapy before ConfR; †defined as PC of $\geq 50 \times 10^9 / L$ on $\geq 75\%$ of assessments between week 19 and week 25 with no rescue therapy within ≥ 4 weeks of PC assessment or start of new therapy before stable response; ‡According to the WHO bleeding scale. #### New data on emerging ITP treatments (9) | Treatment (N) | Study information ¹ | Outcomes | |--|--|---| | Avatrombopag
N=75 ^{1,2}
OLE N=73 ³ | AVA-PED-301 (phase IIIb) Paediatric patients aged 1–17 years with ITP for ≥6 months and an insufficient response to previous treatment Cohort 1: aged 12–17 years; cohort 2: aged 6–11 years; cohort 3: aged 1–5 years | Main phase (data collection 2 March 2021 to 2 August 2023)¹ Primary endpoint – Proportion of patients achieving a durable platelet response:* avatrombopag 28% vs placebo 0% (-28% [95% CI 16-40]; p=0.0077) Cohort 1 43%; Cohort 2 20%; Cohort 3 15% Alternative primary endpoint of platelet response:† avatrombopag 81% vs placebo 0% (p<0.0001) Cohort 1 81%; Cohort 2 85%; Cohort 3 77% Most frequent TEAEs: petechiae, epistaxis, ecchymosis, headache, cough, pyrexia, oropharyngeal pain, URTI and haematoma Post hoc analyses² Proportion of patients achieving clinically meaningful response (≥30 x 10°/L): avatrombopag 92.6% vs placebo 19.1% Proportion of patients achieving response (≥50 x 10°/L): avatrombopag 90.7% vs placebo 9.5% Open-label extension (data cut-off 30 September 2024)³ Median PC in absence of rescue therapy: within target range‡ for months 2-24 Experienced TRAE: 13.7% Experienced serious TEAEs: 27.4% Most common serious TEAEs: thrombocytopenia (5.5%), epistaxis (5.5%), mucosal haemorrhage (2.7%) and gastroenteritis (2.7%) | ^{*}Defined as ≥ 6 PCs $\geq 50 \times 10^9$ /L during last 8 weeks of the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment period in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment period in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs $\geq 50 \times 10^9$ /L over the 12-week core phase treatment in the absence of rescue therapy; † At least two consecutive PCs consecut AE, adverse event; ITP, immune thrombocytopenia; OLE, open-label extension; PC, platelet count; TEAE, treatment-emergent
AE; TRAE, treatment related AE; URTI, upper respiratory tract infection. 1. Grace RF, et al. Lancet Hematol. 2025;12:e494–504; 2. Grace RF, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PF1251; 3. Grace RF, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2234. ### New data on the impact of ITP (1) #### Study information Outcomes - Prospective cohort study of adults with primary ITP (N=202) - Data from Vienna ITP Biobank - Aim: to evaluate frequency of anaemia, ID,* IDA[†] and signs of haemolysis[‡] - Presence of anaemia: | ND | Persistent | Chronic | |--------|------------|---------| | (n=72) | (n=17) | (n=113) | | 30.6% | 23.5% | | Presence of ID: | ND | Persistent | Chronic | |--------|------------|---------| | (n=72) | (n=17) | (n=113) | | 22.2% | 17.6% | 34.5% | Presence of IDA: | ND | Persistent | Chronic | |--------|------------|---------| | (n=72) | (n=17) | (n=113) | | 12.5% | 11.8% | 14.2% | - **Signs of haemolysis in 35% patients**; similar incidence regardless of disease duration - Haemolysis was associated with anaemia in 35% of these cases - Signs of haemolysis associated with: older age - Platelet count at time of investigation: not associated with anaemia, ID or IDA - Bleeding severity: significantly associated with anaemia - ID associated with: premenopausal age, female sex and younger age - IDA associated with: female sex ^{*}Defined by ferritin levels <30 g/L, transferrin saturation <16% or iron supplementation at study inclusion; †Defined by Hb levels of <12 g/dL (female) and <13 g/dL (male); ‡Considered to be haptoglobin <30 mg/dL, LDH >250 U/L, bilirubin >1.2 mg/dL and reticulocytes >110 G/L. Hb, haemoglobin; ID, iron deficiency; IDA, ID-anaemia; ITP, immune thrombocytopenia; LDH, lactate dehydrogenase; ND, newly diagnosed. Oosterlee J, et al. Presented at: EHA 2025, Milan, Italy. 12–15 June 2025. Abstr PS2262. ### New data on the impact of ITP (2) | Study information | Outcomes | |---|---| | Analysis of patients with persistent and chronic ITP who had not received therapy for previous 8 weeks (n=100) vs people without ITP (age and sex matched controls; n=50)¹ Analysis of occurrence and burden of fatigue and its relationship with cytokines¹ | Mean FACIT scores significantly lower in patients with ITP vs controls in the following wellbeing domains: physical, social, emotional and functional¹ Mean fatigue subscale score in patients with ITP vs controls: significantly lower (p<0.001)¹ Significant factors associated with decreased fatigue subscale scores:* female sex (p<0.001), ITP duration >2 years (p=0.021) and IL-12 levels (p=0.01)¹ IL-12 levels showed negative correlation with several wellbeing domains: physical (p=0.049), social (p=0.003), emotional (p=0.000229), functional (p=0.048), fatigue subscale scores (p=0.04) and total FACIT score (p=0.007)¹ | | Cross-sectional study of patients with chronic and persistent ITP in Greece (N=102)² Analysis of illness perception² Data collected from October 2022 to January 2025 | Patients' HRQoL: moderately good (mean EQ-5D-5L score 0.73; mean EQ VAS score 68.0)² Patients with PC <30 × 10°/L vs PC >100 × 10°/L perceived: lower personal control (p<0.0001); attributed more symptoms to ITP (p=0.021); experienced greater concern (p=0.034)² Factors associated with significant negative association with patients' HRQoL:[†] fatigue (p<0.0001); overall perceived illness burden (p<0.0001)² Poorer HRQoL associated with:[‡] greater perceived consequences of ITP (p=0.045); lower perceived patient control over the disease (p=0.018)² | ^{*}After univariate linear regression analysis; †After two separate multiple linear regression models adjusting for age, gender and PC categories; ‡After a third backward multiple linear regression model. EQ-5D-5L, EuroQol 5-Dimension 5-level; EQ-VAS, EuroQol Visual Analogue Scale; FACIT, Functional Assessment of Chronic Illness Therapy; HRQoL, health-related quality of life; IL, interleukin; ITP, immune thrombocytopenia; PC, platelet count. #### New data on the impact of ITP (3) #### Study information Outcomes - Retrospective analysis of treatment of patients with ITP in Hubei Province, China from January 2020 to December 2022 (N=1,033; 41.1% with chronic ITP) - Online survey using the ITP-PAQ on the impact of ITP on patient HRQoL (n=125) #### **Results from retrospective analysis** - Most common treatment: CS and thrombopoietin drugs - Most frequent AEs: diarrhoea, liver dysfunction, thrombosis #### **Results from ITP-PAQ** Patients with ITP had significantly lower scores in: fatigue, sleep, fear, exercise, work and social aspects # What's new in primary ITP? Key updates from ASH 2024 Data updates March 2025 ### New real-world data on avatrombopag | Study information | Outcomes | |---|--| | AVAMAD multicentre observational study in Spain Adult patients treated with avatrombopag from July 2022 to May 2023 (N=66) | Primary ITP: n=55; chronic ITP: 72.7% Reason for starting treatment with AVA: refractoriness to previous treatment/CS dependence (39.1%); loss of response (34.4%); patient preference (14.0%); side effects with previous treatment (4.7%) 88% started 20 mg AVA QD, with 25.8% requiring 40 mg QD dose Patients responded to AVA:* 86.4%; median time from AVA initiation to response: 2.0 weeks (IQR 1.29–4.29) Patients maintained PC ≥50 x 10°/L at last visit: 90.9% (n=50/55) Patients reduced/discontinued concomitant medication: 56.0% (n=28/50) Patients experienced a side effect: 19.7% Side effects reported: Headache (15.2%), arthralgias (6.1%), GI intolerance (3.0%) Patients discontinued AVA: 16.7%[†] | #### New data on emerging ITP treatments (1/3) | Treatment (N) | Study information | Outcomes | |-----------------------|--|--| | Rilzabrutinib
N=26 | Part B of the open-label phase I/II LUNA2 study Oral rilzabrutinib 400 mg BID Data from patients aged 18–80 years with relapsed ITP* 24-week main treatment period with either entrance to the LTE† or 4-week safety follow-up if ineligible for the LTE Patients enrolled between 22 March 2018 and 31 January 2023 | • Treatment continuation: 58% (n=15) completed main 24-week treatment period, 42% (n=11) met LTE criteria and were ongoing in the LTE Data from 24-week treatment
period • Primary outcome: Durable response [‡] achieved in 35% of patients (95% Cl 17–56%) • Mean number of weeks with PC ≥50 x 10 ⁹ /L or ≥30 x 10 ⁹ /L and double BL: [§] 9.3 weeks • ≥2 consecutive PCs ≥50 x 10 ⁹ /L and increased ≥20 x 10 ⁹ /L from BL: [¶] 42% • Received rescue medication: 12% • Mean change in IBLS score from BL to week 25: −0.07 • Median duration of treatment: 167 days (IQR 112−168) • Any-grade TRAE: 62% (most grade 1) • Most common TRAEs: diarrhoea (35%), headache (23%), nausea (15%) Data from LTE period • Eligible to enter LTE: 42% • Median PCs in LTE: >80 x 10 ⁹ /L • Received rescue medication: 0 • Median duration of LTE treatment: 182 days (IQR 125−323) • AE due to any cause: 73% | ^{*}Patients had to have a response (PC ≥50 x 109/L) to corticosteroids or IVIg/anti-D that was not sustained and failed ≥1 other ITP therapy other than corticosteroids or IVIg); §in the absence of rescue therapy over the 24-week treatment period; ¶in 4 weeks prior to latest elevated PC (PCs separated by \geq 5 days). AE, adverse event; BID, twice daily; BL, baseline; CI, confidence interval; IBLS, ITP bleeding scale; IQR, interquartile range; ITP, immune thrombocytopenia; IVIg, intravenous immunoglobulin G; LTE, long-term extension; PC, platelet count; TRAE, treatment-related AE. Cooper N, et al. Am J Hematol. 2025;100:439-49. [†]Eligible for entrance to LTE if PCs \geq 50 x 10 9 /L or \geq 30 x 10 9 /L and double baseline in \geq 4 of the last 8 weeks of treatment without rescue medication; [‡]PCs ≥50 x 109/L on ≥8 of the last 12 weeks of the 24-week treatment period without the use of rescue medication after 10 weeks of active treatment; ### New data on emerging ITP treatments (2/3) | Treatment (N) | Study information | Ou | tcomes | |---|--|--|---| | Rozanolixizumab TP0003 (n=33) TP0006 (n=30) TP0004 (n=43)* | Phase III studies TP0003, TP0006 (24-week) • Randomized 2:1 to receive RLZ or PBO • ≈15 mg/kg starting dose; ≈10 mg/kg maintenance dose Q2W • Data from patients ≥18 years with chronic or persistent primary ITP ^{+,‡} and PC <30 x 10 ⁹ /L TP0004 (1-year OLE)* • Patients started on Q2W dosing but then switched to QW after protocol amendment | Data from TP0003 • Primary outcome: DCMPR§ in RLZ vs PBO groups: 4/21 vs 0/12 pts • Mean time PC ≥50 x 109/L RLZ vs PBO: 7.6 vs 2.5 weeks • Any TEAE in RLZ vs PBO: 85.7% vs 75.0% • TEAEs leading to discontinuation in RLZ vs PBO: 4.8% vs 0% • Most frequently reported TEAEs: Headache, pyrexia, nausea | Data from TP0006 • Primary outcome: DCMPR§ in RLZ vs PBO groups: 1/20 vs 0/10 pts • Mean time PC ≥50 x 109/L RLZ vs PBO: 4.0 weeks vs 1.4 weeks • Any TEAE in RLZ vs PBO: 95.0% vs 60.0% • TEAEs leading to discontinuation in RLZ vs PBO: 10.0% vs 0% • Most frequently reported TEAEs: Headache, pyrexia, nausea | | | Studies terminated early; as termination was not due to safety concerns, ongoing participants could continue with trials. | Data from TP0004 (1-year OLE) • Primary endpoint: Any TEAE in QW vs Q2W group, 59.1% vs 88.1% • Primary endpoint: No TEAEs lead to treatment discontinuation • Mean PCs ≥50 x 109/L maintained during QW dosing but not Q2W dosing | | ^{*}Patients who completed 24-week double-blind treatment period of TP0003 or TP0006 could enrol into TP0004; †Persistent ITP: 3–12 months duration, chronic ITP: >12 months duration; †Participants must have intolerance or insufficient response to ≥2 SoC ITP treatments and a history of response to previous ITP therapy; §PC ≥50 x 10°/L for ≥8/12 visits during weeks 13–25. DCMPR, durable clinically meaningful platelet response; ITP, immune thrombocytopenia; OLE, open-label extension; PBO, placebo; PC, platelet count; pts, patients; QW, once weekly, Q2W, once every 2 weeks; RLZ, rozanolixizumab; SoC, standard of care; TEAE, treatment-emergent adverse event. Cooper N, et al. *Br J Haematol*. 2025;206:675–88. ### New data on emerging ITP treatments (3/3) | Treatment (N) | Study information | Outcomes | |------------------------|---|---| | • Avatrombopag
N=94 | Real-world observational
study in China Children age <18 years
with primary ITP treated
with avatrombopag for
≥4 weeks from February
2020 to March 2024 | Median effective dose: 10 mg for children <6 years; 20 mg for children <18 years Overall response achieved:* 72.3% within 4 weeks; 73.4% within 12 weeks Sustained response:[†] 62.3% at 24 weeks; 51.6% at 48 weeks Proportion of bleeding symptoms and rate of bleeding events remained lower than BL throughout the study Concomitant medications reduced throughout the study period: BL 55.3%; 48 weeks 14.8% Most frequent AE: thrombocytosis (PC ≥400 x 10⁹/L) in 44 children, occurring 97 times | AE, adverse event; BL, baseline; ITP, immune thrombocytopenia; PC, platelet count. Wang N, et al. *Br J Haematol*. 2025;206:935–43. ^{*}The number of patients achieving complete response (at least one PC \geq 100 x 10 9 /L between 7 days and 4 weeks after initiation, without the need for rescue therapy) and platelet response (PC 30-100 x 10 9 /L, with \geq 2x increase in PC from baseline at least once between 7 days and 4 weeks after initiation, without the need for rescue therapy); †PCs >30 x 10 9 /L at 75% of assessment points from initial response to 24 and 48 weeks of follow-up. #### **Critical bleeds in patients with ITP** #### **Study information** - Systematic review of treatments for critical bleeds in patients with ITP - Information extracted for patients who received ≥1 intervention and for whom PC response, bleeding, disability (neurological sequalae or declining mental state) or death was reported - 49 eligible studies: N=112 critical bleed patients with ITP (n=66 children, n=36 adults, n=10 unreported age) #### **Outcomes** • Most common interventions (n>10): CS + platelet transfusion + splenectomy (n=13); CS + IVIg (n=13); splenectomy alone (n=13); IVIg alone (n=11) #### **Patient outcomes** - Mortality: 25.0% (adults 30.6%, children 19.7%) - PC response*: 83.6% (adults 92.6%, children 79.5%) - Bleeding resolution achieved: 81.7% (adults 84.6%, children 81.4%) - Neurological sequalae or declining mental state: 16.2% (adults 9.1%, children 19.2%) - Mortality associated with ICH vs non-ICH bleeds: 24.5% vs 28.6% - Mortality with single intervention vs combination: 30.2% vs 21.7% CS, corticosteroids; ICH, intracranial haemorrhage; ITP, immune thrombocytopenia; IVIg, intravenous immunoglobulin; PC, platelet count. Chowdhury SR. et al. Eur J Haematol. 2025;144:458–68.